Google Search Baidu Search
(多个关键字请用"空格"格开)
您当前的位置:首页 > 科研成果 > 论文
论文

Interaction mechanism of plant-based nanoarchitectured materials with digestive enzymes of termites as target for pest control: Evidence from molecular docking simulation and in vitro studies 

 
论文编号:
作者: Mishra S
刊物名称: Journal of Hazardous Materials
所属学科:
论文题目英文: Interaction mechanism of plant-based nanoarchitectured materials with digestive enzymes of termites as target for pest control: Evidence from molecular docking simulation and in vitro studies
年: Feb 2021
卷: 403
期:
页: 123840
联系作者: Mishra S; Yang XD
收录类别:
影响因子: 9.038
参与作者:
备注:
摘要: The integration of nanotechnology for efficient pest management is gaining momentum to overcome the challenges and drawbacks of traditional approaches. However, studies pertaining to termite pest control using biosynthesized nanoparticles are seldom. The present study aims to highlight the following key points: a) green synthesis of AgNPs using Glochidion eriocarpum and their activity against wood-feeding termites, b) testing the hypothesis that AgNPs diminish digestive enzymes in termite gut through in silico analysis. The green synthesis route generated spherical PsAgNPs in the size range of 4-44.5 nm exhibiting higher thermal stability with minimal weight loss at 700 °C. The choice and no-choice bioassays confirmed strong repellent (80.97%) and antifeedant activity of PsAgNPs. Moreover, PsAgNPs exposure caused visible morphological changes in termites. Molecular docking simulation indicated possible attenuation of endoglucanase and bacteria-origin xylanase, digestive enzymes from termite gut, through partial blocking of the catalytic site by AgNPs. Altogether, our preliminary study suggests promising potentials of PsAgNPs for pest management in forestry and agriculture sectors to prevent damages to living trees, wood, crops, etc. As sustainable pest management practices demand low risk to the environment and biodiversity therefore, we recommend that more extensive studies should be performed to elucidate the environmental compatibility of PsAgNPs.
论文下载: 下载地址
   

关闭窗口

返回首页

CAS-MART.png
数字标本.png
东南亚中心2.jpg
前往中国植物园联盟网站
W020160606696316538360.jpg
屏幕快照 2018-07-04 09.56.59.png