Google Search Baidu Search
(多个关键字请用"空格"格开)
您当前的位置:首页 > 科研成果 > 论文
论文

Forests buffer thermal fluctuation better than non-forests 

 
论文编号:
作者: Lin H
刊物名称: Agricultural and Forest Meteorology
所属学科:
论文题目英文: Forests buffer thermal fluctuation better than non-forests
年: May 2020
卷: online
期:
页:
联系作者: Lin H
收录类别:
影响因子: 4.189
参与作者:
备注:
摘要:

With the increase in intensity and frequency of extreme climate events, interactions between vegetation and local climate are gaining more and more attention. Both the mean temperature and the temperature fluctuations of vegetation will exert thermal influence on local climate and the life of plants and animals. Many studies have focused on the pattern in the mean canopy surface temperature of vegetation, whereas there is still no systematic study of thermal buffer ability (TBA) of different vegetation types across global biomes. We developed a new method to measure TBA based on the rate of temperature increase, requiring only one radiometer. With this method, we compared TBA of ten vegetation types with contrasting structures, e.g. from grasslands to forests, using data from 133 sites globally. TBA ranged from 5.2 to 21.2 across these sites and biomes. Forests and wetlands buffer thermal fluctuation better than non-forests (grasslands, savannas, and croplands), and the TBA boundary between forests and non-forests was typically around 10. Notably, seriously disturbed and young planted forests displayed a greatly reduced TBA as low as that of non-forests at high latitudes. Canopy height was a primary controller of TBA of forests, while the TBA of grasslands and savannas were mainly determined by energy partition, water availability, and carbon sequestration rates. Our research suggests that both mean values and fluctuations in canopy surface temperature should be considered to predict the risk for plants under extreme events. Protecting mature forests, both at high and low latitudes, is critical to mitigate thermal fluctuation under extreme events.

论文下载: 下载地址
   

关闭窗口

返回首页

CAS-MART.png
数字标本.png
东南亚中心2.jpg
前往中国植物园联盟网站
W020160606696316538360.jpg
屏幕快照 2018-07-04 09.56.59.png