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Abstract 

The relationship linking leaf physiognomy and climate has long been used in 

palaeoclimatic reconstructions, but current models lose precision when worldwide 

data sets are considered because of the broader range of physiognomies that occur 

under the wider range of climate types represented. Our aim is to improve the 

predictive power of leaf physiognomy to yield climate signals, and here we explore 

the use of an algorithm based on the general regression neural network (GRNN), 

which we refer to as Climate Leaf Analysis with Neural Networks (CLANN). We then 

test our algorithm on Climate Leaf Analysis Multivariate Program (CLAMP) data sets 

and digital leaf physiognomy (DLP) data sets, and compare our results with those 

obtained from other computation methods. We explore the contribution of different 

physiognomic characters and test fossil sites from North America. The CLANN 

algorithm introduced here gives high predictive precision for all tested climatic 

parameters in both data sets. For the CLAMP data set neural network analysis 

improves the predictive capability as measured by R
2
, to 0.86 for MAT on a 

worldwide basis, compared to 0.71 using the vector-based approach used in the 

standard analysis. Such a high resolution is attained due to the nonlinearity of the 

method, but at the cost of being susceptible to 'noise' in the calibration data. Tests 

show that the predictions are repeatable, and robust to information loss and applicable 

to fossil leaf data. The CLANN neural network algorithm used here confirms, and 

better resolves, the global leaf form–climate relationship, opening new approaches to 

palaeoclimatic reconstruction and understanding the evolution of complex leaf 

function.  
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physiognomy 

 

1. Introduction 

 

With the increasing concern about global climate change, in recent decades there 

have been new and broader interests in palaeoclimate reconstructions. Palaeobotany 

has a long tradition of exploiting leaf form to determine past climates (e.g. Bailey and 

Sinnott, 1915, 1916; Dilcher, 1973; Greenwood, 1993; Jacobs, 1999, 2002; Jacques et 

al., 2011; Kowalski and Dilcher, 2003; Spicer and Herman, 2010; Srivastava et al., 

2012; Su et al., 2013; Wilf, 1997; Wilf et al., 1998; Wing and Wolfe, 1993, 1995). 

These physiognomic methods have more than one hundred years of history from the 

first description of the relationship linking the percentage of leaves with entire 

margins to temperature (Britton and Brown, 1913). Since then both univariate (Wolfe, 

1979) and multivariate approaches (Kovach and Spicer, 1996; Jacques et al., 2011; 

Peppe et al., 2011; Spicer, 2000, 2007; Spicer et al., 2004, 2009; Wolfe, 1990, 

1993; Wolfe and Spicer, 1999; Yang et al., 2011, 2015) have been developed to 

reconstruct temperature, precipitation, and other climatic parameters. 

There is a rich literature about the relationship between climate and foliar 

physiognomy: the percentage of species with entire margined leaves increases with 

temperature (Wilf, 1997; Wolfe, 1979, 1993), leaf size increases with moisture 

availability (Givnish, 1987; Peppe et al., 2011), and 'drip tips' are common in warm 

and humid environments (Leigh, 1975), but common mechanistic links between 

individual characters and single climate variables across all taxa remain elusive 

(Jordan, 2011). This is probably because modular genetic control, driven by 
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pleiotropy, influences variation in form under a variable environment, and ultimately 

leads to natural selection for strongly linked but flexible functional systems (Falconer 

et al., 1996; Juenger et al., 2005; Rodriguez et al., 2014) and “phenotypic integration,” 

in which functionally related traits covary in complex ways within a given organism 

(Pigliucci, 2003). Leaves must optimize a variety of ecophysiological functions 

simultaneously and are developmentally integrated; it seems unlikely then that they 

would show single-character form-function-environment relationships (Yang et al., 

2015). 

A practical application of linking physiognomy and climate is the development of 

tools to retrodict past climate from leaf fossils via some form of function (f): 

Climate = f (physiognomic features) 

The recent assembly of a large global foliar physiognomic data set (378 sites) 

demonstrates that in natural woody dicot vegetation an integrated spectrum of leaf 

form exists across multiple leaf character states and species, and appears more 

strongly influenced by prevailing climate than biogeographic history. In this data set 

the co-variation of leaf traits across species suggests strong integration of leaf form 

(Yang et al., 2015). This work also demonstrates correlations between characters 

across a wide spectrum of woody dicot taxa despite the inclusion of samples from 

highly endemic floras. We know, therefore, that there is a relationship linking climate 

and physiognomy independent of taxonomic composition; however, we have little 

idea of the form of the function, how complex it is, and its parameters. Using simple 

relationships to build a complex multivariate function proves to be difficult because 

we lack information about how the factors interact. Univariate methods, such as leaf 

margin analysis, reduce the problem to one climatic parameter linked to one 

physiognomic feature, while digital leaf physiognomy (DLP) first looks at the 
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physiognomic features with the highest explanation power, and then calculates the 

parameters of the function (Peppe et al., 2011; Royer et al., 2005). Both these 

approaches ignore, or in the case of DLP try to filter, the integrated nature of leaf form 

and function. If phenotypic integration results in an overall optimized solution to 

maximizing photosynthetic return for minimal resource investment, then the 

assumption that one particular subset of character/climate relationships is more 

important than another is dangerous when developing a climate proxy that has to be 

reliable across time and space. 

CLAMP does not explicitly filter physiognomic characters but uses a vector-based 

direct ordination method, Canonical Correspondence Analysis (ter Braak, 1986), to 

seek physiognomic/climate relationships across 31 leaf characters and a variety of 

climate variables. Like all previous approaches this uses traditional algebraic methods 

to compute model parameters. Major climate trends are sought through the cloud of 

modern natural or naturalized vegetation sites positioned relative to one another based 

on the leaf physiognomy displayed by at least twenty of their woody dicot component 

taxa. This cloud of calibration sites form what is known as „physiognomic space‟. By 

using observed climate data for each of the vegetation sites climate trends across 

physiognomic space are determined and expressed as straight-line vectors. These 

vectors were originally aligned by eye in two-dimensional space (Wolfe, 1993) but 

subsequently objectively positioned first in two-dimensional space (Kovach and 

Spicer, 1996) and subsequently in four-dimensional space (Spicer et al., 2003). Higher 

dimensions carry little additional information for most calibration data sets. Samples 

with no known climate, such as fossil leaf assemblages, are positioned passively and 

their position along the vector (the vector score) is used to predict the unknown 

climate (CLAMP website: http://clamp.ibcas.ac.cn; Kovach and Spicer, 1996; Spicer, 
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2000; Wolfe and Spicer, 1999). 

With small calibration data sets the structure of physiognomic space is relatively 

simple (Jacques et al., 2011; Spicer, 2000; Stranks and England, 1997), and the vector 

approach has proved adequate for predicting past climate accurately as measured 

against other palaeoclimate proxies (Kennedy et al., 2002; Spicer et al., 2003), even 

accommodating some structural complexity by means of a non-linear regression 

model for calibrating the vectors. However, with large data sets spanning a diversity 

of vegetation and climates the ability of the vectors to capture the complexity of 

physiognomic space and the leaf form-climate relationship degrades (Yang et al., 

2015), although the complexity can be visualized using a generalized additive model 

(Wood, 2011; Yang et al., 2015).  

Because of the complexity of the relationship between plants and climate, it is quite 

likely that non-linear interactions exist among various aspects of the leaf 

physiognomy-climate relationship. So far, different approaches, such as CLAMP, 

DLP and other related modified approaches, seek linear trends that may constrain the 

prediction ability when worldwide data sets are considered. This is because a wider 

range of physiognomies occurs under the greater diversity of climate types 

represented as the size and geographic spread of the calibration data set increases. 

Non-linear relationships should be sought to improve the precision of palaeoclimatic 

reconstruction from leaf physiognomy.  

The purpose of this work is not to present an alternative palaeoclimate proxy to 

those currently in use, but to explore a different way of revealing the information 

content of physiognomic space. In this study, we explore a new non-linear approach 

to approximate the function linking climate and physiognomy. The general regression 

neural network (GRNN) is a type of artificial neural network (ANN) that can 
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approximate to both linear and nonlinear regressions (Specht, 1991). The GRNN is 

particularly advantageous with sparse data in a real-time environment, because the 

regression surface is instantly defined everywhere (Specht, 1991). As such the GRNN 

is a useful technique to investigate the climate and physiognomy relationship. We 

tested GRNN on two different physiognomy data sets and compared our results with 

those obtained from other computational methods. We also tested the GRNN using 

different physiognomic characters and fossil sites from North America. 

 

2. Material and methods 

 

2.1. Leaf physiognomy and climatic data sets 

 

Two data sets were used in this study. The CLAMP global data set (Yang et al., 

2015; the CLAMP website: http://clamp.ibcas.ac.cn) and the DLP data set (Peppe et 

al., 2011). Both data sets have a similar structure: a physiognomic data set that 

encapsulates leaf characteristics for each sampling site, and a meteorological data set 

describing the climate data for the same sites. 

The CLAMP global data set used here is made up of 378 sites worldwide. The 

meteorological data usually consists of 11 parameters retrieved from a gridded data 

set (New et al., 2002; Spicer et al., 2009). The physiognomic data consist of a string 

of 31 characters describing leaf physiognomy across at least 20 taxa for each of those 

sites. 

The DLP data set consists of 92 sites around the world. The meteorological data is 

made up of 10 parameters retrieved from WorldClim (Hijmans et al., 2005). The 

physiognomic data consist of 28 characters. Because the CLAMP data set is larger 
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than the DLP data set, and thus potentially more complex, we chose to use the 

CLAMP data set in detailed tests of GRNN. 

 

2.2. CLANN algorithm 

 

We developed an algorithm based on GRNN. The predicted value (target)     to 

input vector X in the GRNN is computed by the equation (Specht, 1991): 

       
         

  
 

    
 
   

      
     

  
 

    
                                

Where i is number of hidden nodes (samples) i = 1, 2, 3, ..., n. The optimal value of 

 , which here denotes the spread, can be determined by cross-validation (Specht, 

1991).   
  is the Euclidian distance between the prediction site    and each known 

sites X, which is given by the following equation: 

                                                        

We were able to simulate a GRNN (Fig. 1; Supplementary Algorithm S1, S2) using 

an algorithm we call CLANN (Climate Leaf Analysis with Neural Networks). The 

physiognomic data set corresponds to the input, whereas the meteorological data set 

corresponds to the target. The active sites were used as a training data set for the 

network. Because variables with large magnitudes are combined with those with 

small magnitudes, the former can mask the effect of the 

latter due to the larger weights associated with them (Sandhya, 2006), so it is crucial 

to normalize data prior to ANNs training process (Sola and Sevilla, 1997). All 

parameters of the active physiognomic data set were normalized so that their 

minimum and maximum values ranged between -1 and +1. The physiognomic 

parameters of the passive sites were transformed using the same function. The 
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transformed active physiognomic data set was used for the weights of the input layer 

(Fig. 1). The meteorological data of the active data set were used as the weight of the 

pattern layer (Fig. 1).  

 

Fig. 1 

 

2.3.  Performance 

 

2.3.1. Cross-validation 

Because ANNs are prone to over-training (Plumb et al., 2005), we used a repeated 

k-folds cross-validation process to test the precision of the approach (Fig. 1). All sites 

were randomly separated to 10 folds using the 10-fold validation method in R. One of 

these folds was selected for test data and the other 9 folds for calibration data. The 

meteorological parameters of the test data were reconstructed using the trained model. 

This 10-fold validation was repeated 10 times. The mean values of predictions for all 

sites were compared to the observed meteorological data. 

 

2.3.2. Diagnostic values 

Two diagnostic values were calculated to measure the performance of the model: 1) 

the R-squared (R
2
) between the predicted and observed values, 2) the standard 

deviation of the residuals (SD). 

 

2.3.3. Spread selection 

The spread is the only parameter that can be adjusted in a GRNN. A lower spread 

will give relatively higher weights to active sites near the passive site. A higher spread 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

10 
 

will tend to give more similar weights over all the data set. In other words, a lower 

spread increases the influence of local sites while a high spread gives results that tend 

towards the mean of the data set. Different spreads were tested for our model; tested 

values were from 0.1 to 2.00 with an increment of 0.01. The R
2
 between the observed 

values and the values predicted under the 10-fold cross-validation procedure was used 

as a measure of performance of the model. For each climatic parameter, we selected 

the spread that gave the highest R
2
. 

 

2.4. Significance of the model 

To test if there is a real climatic signal retrieved by the CLANN algorithm from leaf 

physiognomy, we composed an artificial physiognomy file consisting of random 

numbers, and compared our results from the CLAMP data set with that from this 

random data set. The random physiognomic data set was built using the function 

„runif‟ in R, following the rules of scoring for CLAMP (Wolfe, 1993). For example in 

CLAMP scoring the sum score of the characters 'no teeth', 'rounded teeth' and 'acute 

teeth' is 100 and the total score of the three leaf base characters is 100. The random 

numbers were constructed in such a way that such restrictions in the scoring regime 

(see the CLAMP website, http://clamp.ibcas.ac.cn, for details) were adhered to. The 

algorithm used is given in supplementary Algorithm S3. The cross-validation 

procedure was used with this random data set as if it were the physiognomic data set 

along with the meteorological data set used for CLAMP. The spread was adjusted for 

this data set. R
2
 values of predicted versus observed values for the random data set 

and the R
2
 values of predicted versus observed values for the CLAMP data set were 

compared to test the validity of the model. 
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2.5. Comparison with previous methods 

To calculate the performance of CLAMP under a cross-validation process, we used 

the R package „Vegan‟ (Oksanen, 2015). The models followed the usual calculation 

method (Jacques et al., 2011; Yang et al. 2011). 

The DLP calculations for the cross-validation procedure were carried out using the 

software R. The multiple regression models for DLP data were built according to 

Peppe et al. (2011). The regression parameters were selected using stepwise model 

selection by AIC in R package „MASS‟ (Ripley et al., 2015). 

 

2.6. Contribution of each character 

The physiognomic characters can be grouped in seven classes: lobed (character #1), 

leaf margin (characters #2 to 7), leaf size (characters #8 to 16), leaf apex (characters 

#17 to 20), leaf base (characters #21 to 23), length-to-width ratio (L:W, characters #24 

to 28), and leaf shape (characters #29 to 31). 

The influence of each character class was analyzed in two ways. 

(1) a new input data set created by excluding a class from the physiognomic data set. 

The cross-validation procedure is carried out using this new input data set. This is 

done for all classes turn-by-turn. 

(2) a new input data set created using only one feature class of the physiognomic data 

set. The cross-validation procedure is carried out using this new input data set. This is 

done for all classes turn-by-turn. 

Spreads are adjusted for each newly designed data set by training the new data sets 

respectively using the CLANN algorithm (see supplementary Algorithm S2). 

 

2.7. Application to fossil assemblages 
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Canonical correspondence analyses (CCAs) were carried out to understand the 

differences between regions and to visualize where the fossil sites were located in 

relation to calibrated physiognomic space (physiognomic space defined by modern 

vegetation sites growing within a known climate regime). A CCA was carried out on 

the physiognomic data of the modern CLAMP data set and another on the 82 fossil 

sites from Eocene to Pliocene in North America presented in Yang et al. (2011). Both 

CCAs were made using the R package „Vegan‟ (Oksanen, 2015).  

Palaeoclimates were reconstructed from 82 Eocene to Pliocene fossil sites in North 

America (36 Paleogene fossil sites and 46 Neogene fossil sites), to test the parity 

between CLAMP and CLANN when reconstructing palaeoclimates. A pared t-test 

was performed with IBM SPSS Statistics software (version 20, IBM Corporation, 

Somers, NY, USA) to explore the differences in the reconstructed palaeoclimates 

between CLAMP and CLANN. We also drew box plots to show how large these 

differences were among the 11 reconstructed climate parameters. 

 

3. Results 

 

3.1. Performance 

The best spreads, R
2
, and P of the CLANN algorithm for the CLAMP and DLP data 

set are shown in Table 1. 

 

Table 1 

 

For the CLAMP data set, the predictive power as measured by R
2
 ranged between 

0.42 and 0.86 for all climatic parameters. The relationship between predicted and 
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observed values for all climatic parameters is highly significant (see P values). The 

relationships between observed and predicted values for MAT and GSP are indicated 

on Fig. 2. Comparison of CLAMP and CLANN predictions for all of the 11 climate 

parameters are shown in the Supplementary Figs. S1-S11. The CLANN algorithm 

gives high predictive power across all 11 parameters. 

 

Fig. 2 

 

For the DLP data set, the predictive power is low for MAP, with an R
2
 of only 0.21. 

However, the relationship between observed and predicted values is highly significant 

for both MAP and MAT (Table 1). 

 

3.2. Significance 

The R
2
 and P between the predicted and observed values for the CLAMP 

physiognomic data set and a random physiognomic data set are shown in Table 1. All 

R
2
 values for the random data set are very low. The relationship between the predicted 

and observed values for the random data set is not significant for all climatic 

parameters. These results show that the CLANN algorithm gives higher predictive 

power than CLAMP for the real CLAMP data set, but presents very poor predictions 

for the random data set.  This shows that the CLANN algorithm retrieves climate 

information from the CLAMP data set and does not impose patterns where none exist. 

 

3.3. Comparison with previous methods 

Diagnostic values of CLANN and CLAMP, including R
2
 and standard deviations, 

are given in Table 2. Whatever the climatic parameter considered and whatever the 
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diagnostics used, CLANN always gives better precision than CLAMP. Supplementary 

Figs S1-11 compare the relationships between observed and predicted values for 

CLAMP and CLANN. For 3-DRY and RH, there are greatly improved predictions by 

CLANN compared to CLAMP. For 3-DRY and RH, the R
2 

of CLAMP predictions are 

around 0.16 and 0.30 respectively, whereas CLANN gives much better predictive 

power. Note that these values are different from those for the whole data set because 

they refer to the mean statistics of the 10-fold cross validation subsamples of the full 

data set (Fig. 1). Figs. S1-11 show that sample points are less dispersed using the 

CLANN model than for CLAMP, and that the model regression line is closer to the 

y=x line for CLANN than for CLAMP. 

 

Table 2 

 

Diagnostic values of CLANN and DLP are also given in Table 2. For all climatic 

parameters, except GDD and GSDD, CLANN always gives better diagnostic values 

than DLP. For GDD and GSDD, the diagnostic values are quite similar between the 

DLP and CLANN predictions. 

 

3.4. Contribution of each character 

The R
2 

for each climatic parameter when a character class is lost is shown on Fig. 3. 

Whatever the class of character excluded and whatever the climatic parameter 

considered, the R
2
 is similar to the one obtained with all characters present. 

 

Fig .3 
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The R
2
 for each climatic parameter when only one character class is included is 

shown on Fig. 4. In most instances, the R
2
 is clearly different from zero. For 

temperature-related parameters, the features concerning the teeth give the highest R
2
. 

For precipitation-related parameters, leaf size characters typically have the highest 

predictive power. No character class alone reaches the R
2
 levels obtained with all 

characters. 

 

Fig. 4 

 

3.5. Comparison between CLAMP and CLANN for fossil sites 

 

CCA axes 1 v 2 and CCA axes 1 v 3 (Fig. 5) show the distribution of 82 North 

American Paleogene and Neogene fossil sites (black open circles), within the cloud of 

modern sites (coloured symbols) that define physiognomic space for the calibration 

data set. All the 82 fossil sites are located within modern physiognomic space. This 

implies that the palaeoclimate for all of these fossil sites can be reconstructed using 

CLANN. 

 

Fig. 5 

 

Based on the results of palaeoclimates reconstructed using CLAMP and CLANN 

(Supplementary Table S1, S2 respectively), we explored the difference between these 

two methods using the paired t-test. Table S3 shows that there were significant 

differences in six palaeoclimate parameters reconstructed by CLANN and CLAMP, 

implying that there were differences between these two models when reconstructing 
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palaeoclimates. For these six palaeoclimate parameters, CLANN generates higher 

prediction values for WMMT, LGS, GSP, and 3-WET, while it gives lower values for 

CMMT and RH. For 3-DRY, although CLANN greatly improved predictive precision 

compared to CLAMP, the t-test result shows no significant difference in the mean 

values between these two methods. 

The box plots show that CLANN produces obviously higher median values for 

MAT, WMMT and LGS, while it gives distinctly lower median values for CMMT, 

GSP and MMGSP.  For 3-DRY, the box plots show only a small difference in the 

median value; while CLANN gives a larger range of reconstructed climate values. 

The results also show that CLANN predictions have larger ranges than those of 

CLAMP for all the moisture-related climate parameters. 

 

4. Discussion 

 

4.1. An improved palaeoclimatic model 

A skeptic could argue that our results are an artifact of the algorithm, and that there 

is no real climatic signal to be retrieved from leaf physiognomy. To test this, we 

compared our results to results obtained from an artificial physiognomy file consisting 

of random numbers. When using this random input data set, all R
2
 values for the 

relationships between predicted and observed values were below 0.01 (P  >  0.3 for 

all tested climate variables; see Table 1). Whereas with the observed leaf 

physiognomy data set (Table 2), the smallest R
2
 we get is 0.42 (see Table1; for 3-WET, 

which refers to precipitation during the three consecutive wettest months). Therefore, 

we conclude that the CLANN algorithm is capable of revealing structure in the data 

that is present in the real observations but absent in the random artificial data. 
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In this study, two indices were used to test the performance of the new CLANN 

method. For all climatic parameters, CLANN performs better than CLAMP (Table 2). 

CLANN also performs better than DLP for eight parameters, while there are no 

significant differences between CLANN and DLP performance for GDD and GSDD 

parameters (Table 2). However, where the same climate parameter is used in both 

CLAMP and DLP, CLAMP exhibits the greater predictive precision.  

Among the methods of palaeoclimatic reconstruction based on leaf physiognomy, 

CLANN is the one that performs best based on R
2 
metrics. For example, based on the 

CLAMP data set, CLANN gives an R
2
 of 0.86 for MAT, which means that CLANN 

can explain 86% of the MAT variability based on the leaf physiognomy variability. A 

perfect model should give 100%. Our model is not perfect; we need to investigate 

possible sources of errors. One source of error is the modelling itself, which does not 

perfectly fit all data. Other sources of error concern imperfections in the data sets: the 

actual climatic parameters experienced by the vegetation may be different from those 

given by the gridded data set; the leaf sampling process may have missed one or two 

species and even if the scoring process is well defined, there can be occasional 

scoring errors. All sources of error contribute to the overall model error and 

methodological improvements cannot rectify error within the data sets. Within these 

constraints it appears that the CLANN model is closer to the minimal error compared 

to CLAMP and DLP models. 

 

4.2 Advantages and limits 

Previous palaeoclimate reconstructions methods based on leaf physiognomy relied 

on a general relationship (trends) between physiognomic features and climate 

variables across whole data sets. The CLANN method is based on a GRNN; therefore, 
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it allows local adaptations of the model to the data (Specht, 1991). However, it raises 

the question of the importance of the local adaptations over the general relationship. It 

is not an easy question to answer: a too generalized model overlooks local adaptations 

that might be important. For example particular combinations of leaf features, 

exhibited within large global foliar physiognomic data sets, might be important for 

detecting marked seasonal variations in water availability and thus a monsoon signal 

(Jacques et al., 2011) and these may be missed if a too generalized model is used. 

However, too strong an importance given to local adaptations diminishes the power of 

the model when used on new sites. In GRNN, the local importance is defined by the 

spread: a high spread favours a more general relationship; a low spread favors local 

adaptations. For a very high spread, the model gives the same value (the mean of the 

calibration data set) for all sites. For a very low spread, the model gives the exact 

value for all calibrating points, and 0 for all other possible points. Using a repeated k-

fold cross-validation approach, we were able to tune the best spreads for our data set 

and avoid over-fitting. If the CLANN method were to be used on another data set, 

new spread values would have to be tuned and even then a low spread would make 

predictions vulnerable to the characteristics of individual calibration sites. In 

situations where species diversity is low and/or sampling or scoring contains errors, or 

the gridded calibration climate data do not reflect well the local conditions 

experienced by the leaves (e.g. in topographically complex mountainous terrain), the 

position of a calibration site in physiognomic space may be anomalous and lead to 

erroneous CLANN predictions for unknown (fossil) sites. This will give rise to 'noise' 

and a large predictive range offered by CLANN. In CLAMP the influence of such 

poor calibration sites is low, but the cost is a reduction in precision. 
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A limit of CLANN is that it cannot be used for sites that fall outside the range of its 

calibrating data set. This limitation is true for any arithmetic model: the error of the 

model increases sharply outside the calibrating range. Even if the models can be 

extrapolated beyond the calibration range, the cost in increasing errors is hidden. In 

the case of CLANN, when a site is far from the range of the calibrating data set, the 

results will be 0: this gives a good control for such sites. However, we recommend 

that users always test if a fossil site is included in the range of calibration. CLANN by 

itself does not provide a visualization of physiognomic space, or the relationship of a 

fossil site to calibrated physiognomic space, but this can be done using CCA. The 

CCA results (Fig. 5) show that all of the fossil sites of North America were located 

within the physiognomic space occupied by the modern global data set, and indicate 

that the CLANN model derived from this calibration is appropriate for exploring the 

palaeoclimates represented by the fossil sites. 

 

4.3. Applicability on different data sets 

We tested our computation methods on two data sets that were built with different 

scoring strategies: the CLAMP data set and the DLP data set. CLANN works on both 

data sets, which indicates that it may also perform well on other data sets. If scoring 

improvements are proposed, or new scoring methods developed, we suggest that 

CLANN represents one of the best computation methods to explore their properties. 

 

4.4. Complex multivariate relationships 

The relationship between leaf physiognomy and climatic parameters is complex 

and multivariate. Ecologists are interested in leaf physiognomic function in relation to 

the environment, including climate. For palaeoclimatic reconstruction, a strong 
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relationship is more important than fully understanding functional mechanisms. In 

contrast to linear models, the GRNN used in CLANN allows the influence of a feature 

to vary inside physiognomic space. This is one of the reasons why CLANN offers 

higher precision than other methods: it models a higher complexity of the 

relationships than those methods. 

Previous studies on CLAMP show that the climatic signal of one parameter is not 

only present in one leaf feature, but that all features can contribute to this signal 

(Spicer et al., 2011; Yang et al., 2015). However some authors suggest that some 

characters correlate only weakly with climate in the present day (Peppe et al., 2010). 

This characteristic is an important issue in palaeobotany, where some leaf features 

cannot be scored because of taphonomic loss and poor preservation in the fossil, or 

correlations may change over time. This leads to a question: is the reconstruction 

method robust to character loss? To test this, 1) each character class was excluded one 

by one from the analysis (Fig. 3); and 2) only one character class was included in each 

analysis (Fig. 4). These results show that a climatic signal is retrieved for all climatic 

parameters whatever the analysis carried out; and there is only a small difference in 

the R
2
 value when some character information is lost. Therefore, our results show that 

the climatic signal is encoded in all character classes and that the CLANN algorithm, 

like CLAMP, is robust against character loss. Our results also show that in the 

calibration data some traits make a higher contribution to the prediction of 

temperature and precipitation related parameters (e.g. teeth and leaf size contribute 

greatly to temperature and precipitation predictions respectively) than others, 

although there is strong integration of leaf form as evidenced by the covariation of 

leaf traits across species (Yang et al., 2015). Does this mean that some leaf characters 

are more 'important' than others for palaeoclimate and the rest ignored? Based on the 
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observation that in some parts of the modern world such as New Zealand even the 

proportion of toothed to non-toothed leaves shows no correlation with mean annual 

temperature (Stranks and England, 1997; Kennedy et al., 2014; Yang et al., 2015) 

clearly the 'importance' of a character is not universal between geographic regions and 

is equally unlikely to be static through time. The purpose of our character removal test 

is to explore the sensitivity of CLANN to character loss, not to argue that one suite of 

characters is more important than another for retrieving climate signals.  

 

4.5. Regional differences 

It has been suggested that several regions have a different leaf physiognomy-

climate relationship (Jacques et al., 2011; Little et al., 2010; Peppe et al., 2011; 

Stranks and England, 1997; Su et al., 2010). These regions include Australia and New 

Zealand (Stranks and England, 1997). For New Zealand, the predictive 3-DRY 

climate values are displaced away from the observed values (Fig. S8), indicating that 

3-DRY cannot be reconstructed confidently but this is easily explained because there 

is no proper dry season in New Zealand. Extreme cold sites from Siberia are outliers 

in CLAMP (Spicer et al., 2004), especially for temperature parameters (e.g. MAT and 

CMMT). With CLANN, there are no outliers (Fig. S1, S3). From these results we 

conclude that the approach we explore here is valid worldwide. Because this new 

method correctly reconstructs modern climate from tropical to cold regions, it is also 

likely to reconstruct well the diversity of past climates. 

Regional constraints have long been recognized for univariate physiognomic 

methods (reviewed in Steart et al., 2010). When the leaf form/climate relationship is 

examined using multiple leaf characters climate dominates over phylogeny in 

determining this relationship, but the structure of physiognomic space can be complex 
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and that this complexity varies among climate parameters (Yang et al., 2015). Because 

CLANN has the ability to adapt to localized trends within physiognomic space, 

regional variations in the relationship between leaf form and climate, particularly 

variations in the mix of characters that result in leaf optimization for local climatic 

regimes, is captured by CLANN.  

Nevertheless, it is clear that a non-random phylogenetic signal is present in both 

leaf traits and the distribution of plants: (1) some families have only leaves with entire 

margin (such as Magnoliaceae), whereas others have only toothed leaves (such as 

Betulaceae); (2) the distribution of plants is not independent of their taxonomy, some 

families are exclusively tropical, whereas others are mostly represented in cold or 

temperate regions. An exaptive scenario has been suggested by some authors to 

explain the distribution of toothed-margin species in cold regions (Little et al., 2010), 

but our results show that each class of character contains some climatic signal for all 

climatic parameters (Fig. 4). Exaptive scenarios to explain the distribution of all the 

studied leaf features along the gradient of all studied climatic parameters therefore 

seem highly improbable. An adaptive scenario, where leaf features are selected by the 

climate, is thus more parsimonious. Therefore, as in Yang et al. (2015), we suggest 

that the climatic signal present in leaf physiognomy (especially for temperatures) is 

mostly independent of phylogeny. 

 

4.6. CLANN as a palaeoclimate proxy 

The 82 Paleogene and Neogene fossil sites analyzed here demonstrate differences 

between CLAMP and CLANN. The box plots show that CLANN predictions may 

cover larger ranges of climate space than CLAMP. Are these greater ranges a 

reflection of reality or are they an artifact? To answer this question it is necessary to 
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compare the methodological differences between CLAMP and CLANN. In CLAMP 

the standard statistical engine is Canonical Correspondence Analysis, the outcome of 

which is the summary of climate trends across physiognomic space represented by 

linear vectors. Such trends inevitably compromise precision because they cannot 

accommodate complexities in physiognomic space (Yang et al., 2015). In CLANN the 

derived climate signal is weighted towards the climate experienced by those 

calibration sites that have the most similar physiognomies to that of the unknown 

(fossil) site. The derived signal is thus in large part dependent on the number of 

calibration sites, and their properties, that are used to obtain the climate of the 

unknown site. Which calibration sites are used to derive the prediction is determined 

by the CLANN 'spread' parameter. Potentially this approach, like the local 

multivariate regression approach (Stranks and England, 1997) and its multiple 

regression surfaces derivative (Yang et al., 2015), can yield more precise climate 

predictions because it better accommodates the complexities of physiognomic space. 

However, the fewer (spread-determined) calibration samples used to derive climate 

predictions in CLANN, compared to the full data set that is used in CLAMP, renders 

it highly sensitive to variation among the calibration sites due to proximity to the 

boundaries of physiognomic space, poor sampling, poor scoring, or uncertainties in 

the modern climate data. This meteorological 'noise' is most pronounced in 

topographically complex mountainous regions (the location of many of the calibration 

sites because this is where natural vegetation survives today) and particularly in 

precipitation data (Spicer et al., 2009). It is perhaps to be expected then that the 

ranges in CLANN predictions for fossil sites are uniformly higher than those for 

CLAMP, most notably in the precipitation variables (Fig. 6). In future this climatic 

noise may be reduced by gridded data that takes into account meso-scale 
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meteorological processes as well as aspect, but at the moment meteorological noise is 

a major limitation on increasing both the precision and accuracy of multivariate foliar 

physiognomic palaeoclimate proxies.  
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Figure Captions 

 

Fig. 1 Schematic illustration of the CLANN algorithm. (1) The entire dataset of 378 

sites were randomly separated to 10 folds using 10-fold validation method in R. One 

of these folds was selected for test data and the other 9 folds for calibration data. This 

10-fold validation was repeated 10 times. (2). Two hundred spreads (from 0.01 to 2, in 

steps of 0.01) were selected for model training. For each model the calibration was 

optimized with 20 10 iterative cycles (epochs) (3). Next, calibration data were 

randomly separated to 10 folds using 10-fold validation method in R. One of these 

folds was selected for validation data and the other 9 folds for training data. (4). 

GRNN training. (5) The diagnostic values were calculated by comparing the predicted 

values and the real values. (6). The models were calibrated based on the optimal 

spread values. (7). Once the models were calibrated they were used to predict climate 

values for test data. The climate parameters of 378 sites were subsequently predicted 

using all the calibrated models 10 iterative cycles (epochs). (8) The mean of all 

predicted climate parameters of 10 iterative cycles were calculated as a measure of the 

performance of the model. 

 

Fig. 2 Climate Leaf Analysis with Neural Networks (CLANN) predictions for mean 

annual temperature (MAT) and growing season precipitation (GSP). The black line 

represents a 1:1 correspondence between the observed and predicted values, the red 

line is the regression representing the CLANN-derived relationship. 

 

Fig. 3 Spider diagram showing the effect of character loss tested by the Climate Leaf 

Analysis with Neural Networks (CLANN). The radii represent the R-squared (R
2
) 
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between the predicted and observed values for the complete physiognomic dataset 

(All), and other seven new datasets created by excluding a class of leaf characters 

from the physiognomic dataset each time. The physiognomic characters are grouped 

in seven classes: lobing, teeth, size, apex, base, length-to-width ratio (L:W), and 

shape. Abbreviations for the climate parameters: MAT, mean annual temperature; 

WMMT, mean temperature of the warmest month; CMMT, mean temperature of the 

coldest month; LGS, length of the growing season; GSP, growing season precipitation; 

MMGSP, mean monthly growing season precipitation; 3-WET, precipitation of the 

three consecutive wettest months; 3-DRY, precipitation of the three consecutive driest 

months; RH, annual mean relative humidity; SH, annual mean specific humidity; ENT, 

enthalpy. 

 

Fig. 4 Spider diagram showing the climatic signal coded by each feature class tested 

by the Climate Leaf Analysis with Neural Networks (CLANN). The radii represent 

the R-squared (R
2
) between the predicted and observed values for the complete 

physiognomic dataset (All), and other seven new datasets created by using just a 

single class of leaf characters from the physiognomic dataset each time. The 

physiognomic characters are grouped in seven classes: lobing, teeth, size, apex, base, 

length-to-width ratio (L:W), and shape. Abbreviations are as in Fig. 3. 

 

Fig. 5 Canonical correspondence analysis (CCA) showing that the 82 fossil sites used 

as CLANN test samples all fall within the physiognomic space defined by the modern 

dataset. CCA axes 1 v 2 and CCA axes 1 v 3 shows the distribution of 82 North 

American Paleogene and Neogene fossil floras (black colour open circles), within the 

cloud of modern sites (coloured symbols) that define physiognomic space for the 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

33 
 

calibration dataset. 

 

Fig. 6 Box plots showing the differences of 12 reconstructed climate parameters for 

the 82 fossil sites using CLAMP and CLANN. Abbreviations for the climate 

parameters are as in Fig. 3. 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

34 
 

 

Figure 1 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

35 
 

 

Figure 2 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

36 
 

 

Figure 3 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

37 
 

 

Figure 4 
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Figure 5 
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Figure 6 
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Table Captions 

 

Table 1. Results of the Climate Leaf Analysis with Neural Networks (CLANN) 

algorithm applied to the Climate Leaf Analysis Multivariate Program (CLAMP) 

PhysgGlobal378 dataset with a corresponding high resolution gridded climate data 

available from the CLAMP website (http://clamp.ibcas.ac.cn), a random 

physiognomic dataset constructed using CLAMP scoring protocols, and the digital 

leaf physiognomy (DLP) datasets of Peppe et al. (2011). Abbreviations: MAT, mean 

annual temperature; WMMT, mean temperature of the warmest month; CMMT, mean 

temperature of the coldest month; LGS, length of the growing season; GSP, growing 

season precipitation; MMGSP, mean monthly growing season precipitation; 3-WET, 

precipitation of the three consecutive wettest months; 3-DRY, precipitation of the 

three consecutive driest months; RH, annual mean relative humidity; SH, annual 

mean specific humidity; ENT, enthalpy; MART, Mean annual range in temperature; 

GSMT, growing season mean temperature; GDD, Growing degree days; GSDD, 

Growing season degree days; GSL, Growing season length; MAP, Mean annual 

precipitation. 

 

Table 2. Comparison of model statistics for the Climate Leaf Analysis Multivariate 

Program (CLAMP), and the digital leaf physiognomy (DLP) with the newly 

introduced Climate Leaf Analysis with Neural Networks (CLANN). In terms of the R-

squared (R
2
) and the standard deviation (SD), CLANN has a better precision than 

CLAMP for all studied climatic parameters from CLAMP dataset. For the DLP 

dataset, both methods give similar precision for GDD and GSDD, but CLANN has a 

better precision for all other parameters than DLP. Abbreviations: MAT, mean annual 
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temperature; WMMT, mean temperature of the warmest month; CMMT, mean 

temperature of the coldest month; LGS, length of the growing season; GSP, growing 

season precipitation; MMGSP, mean monthly growing season precipitation; 3-WET, 

precipitation of the three consecutive wettest months; 3-DRY, precipitation of the 

three consecutive driest months; RH, annual mean relative humidity; SH, annual 

mean specific humidity; ENT, enthalpy. Note that the CLAMP statistics are slightly 

different from those given in Yang et al. (2015) because those given here are 

calculated on the basis of the same random 90% subsets of the full data set as used in 

CLANN for training, whereas those in Yang et al. (2015) are based on the full data set. 
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Table 1 

 

CLAMP dataset Random dataset DLP dataset 

Parameter Spread R
2
 P R

2
 P Parameter Spread R

2
 P 

MAT (°C) 0.52  0.86  1.89×10
-160 

0.0018  0.976  MAT (°C) 0.50  0.66  1.40×10
-21

 

WMMT (°C ) 0.55  0.75  1.87×10
-113

 0.0024  1.141  WMMT (°C) 0.45  0.38  1.04×10
-09

 

CMMT (°C ) 0.49  0.85  5.69×10
-152

 0.0022  0.636  CMMT (°C) 0.48  0.73  1.15×10
-26

 

LGS (months) 0.56  0.85  7.93×10
-156

 0.0027  0.931  MART (°C) 0.50  0.63  1.49×10
-18

 

GSP (cm) 0.57  0.58  1.19×10
-71

 0.0018  0.732  GSMT (°C) 0.47  0.53  2.59×10
-15

 

MMGSP (cm) 0.58  0.56  7.83×10
-67

 0.0020  0.808  GDD (days) 0.50  0.63  1.08×10
-19

 

3-WET (cm) 0.56  0.42  3.63×10
-44

 0.0037  0.354  GSDD (days) 0.49  0.73  1.29×10
-26

 

3-DRY (cm) 0.52  0.60  2.52×10
-75

 0.0098  1.575  GSL (days) 0.39  0.39  7.18×10
-08

 

RH (%) 0.49  0.74  3.92×10
-110

 0.0030  0.810  GSP (cm) 0.39  0.38  2.04×10
-09

 

SH (g/kg) 0.56  0.80  7.42×10
-130

 0.0026  0.800  MAP (cm) 0.57  0.21  4.73×10
-05

 

ENT (0.1 kJ/kg) 0.55  0.83  3.77×10
-105

 0.0023  0.828      
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Table 2 

 

 

  

CLAMP dataset DLP dataset 

Parameter 

CLAMP  method CLANN method 

Parameter 

DLP method CLANN method 

R² SD R² SD R2 SD R2 SD 

MAT(°C) 0.71 4.10 0.86  2.85 MAT (°C) 0.54 4.15 0.66 2.72 

WMMT(°C ) 0.41 3.97 0.75  2.59 WMMT (°C) 0.27 3.51 0.38 2.73 

CMMT(°C ) 0.62 6.92 0.85  4.40 CMMT (°C) 0.63 6.12 0.73 3.40 

LGS(months) 0.66 1.92 0.85  1.26 MART (°C) 0.38 5.85 0.63 3.32 

GSP(cm) 0.41 56.96 0.58  47.86  GSMT (°C) 0.46 3.84 0.53 3.06 

MMGSP(cm) 0.28 6.11 0.56  4.77 GDD (days) 0.66 865.77 0.63 872.54 

3-WET(cm) 0.20 33.55 0.42  28.56 GSDD (days) 0.77 598.15 0.73 653.99 

3-DRY(cm) 0.16 13.40 0.60  9.23 GSL (days) 0.09 132.39 0.39 52.31 

RH(%) 0.30 9.68 0.74  5.89  GSP (cm) 0.16 162.21 0.38 56.36 

SH(g/kg) 0.67 1.99 0.80  1.58 MAP (cm) 0.05 92.42 0.21 77.97 

ENT(0.1 kJ/kg) 0.72 1.07 0.83  0.84       
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Graphical abstract 
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Highlights: 

▶ We developed an artificial neural network to test leaf form/climate relationships. 

▶ The new algorithm (CLANN) reveals a high-resolution climatic signal in leaf form. 

▶ CLANN predictions are repeatable, robust to information loss, and precise. 

▶ The new method is applicable to fossil leaf data and could form a new climate 

proxy. 


