Google Search Baidu Search
(多个关键字请用"空格"格开)
您当前的位置:首页 > 科研成果 > 论文
论文

Labile carbon retention compensates for CO2 released by priming in forest soils 

 
论文编号:
作者: Qiao N
刊物名称: Global Change Biology
所属学科:
论文题目英文: Labile carbon retention compensates for CO2 released by priming in forest soils
年: Dec 2013
卷: online
期:
页:
联系作者: Douglas Schaefer
收录类别:
影响因子: 6.91
参与作者:
备注:
摘要: Increase of belowground C allocation by plants under global warming or elevated CO2 may promote decomposition of soil organic carbon (SOC) by priming and strongly affects SOC dynamics. The specific effects by priming of SOC depend on the amount and frequency of C inputs. Most previous priming studies have investigated single C additions, but they are not very representative for litterfall and root exudation in many terrestrial ecosystems. We evaluated effects of 13C-labeled glucose added to soil in three temporal patterns: single, repeated, and continuous on dynamics of CO2 and priming of SOC decomposition over 6 months. Total and13C labeled CO2 were monitored to analyze priming dynamics and net C balance between SOC loss caused by priming and the retention of added glucose-C. Cumulative priming ranged from 1.3 to 5.5 mg C g−1 SOC in the subtropical, and from −0.6 to 5.5 mg C g−1 SOC in the tropical soils. Single addition induced more priming than repeated and continuous inputs. Therefore, single additions of high substrate amounts may overestimate priming effects over the short term. The amount of added glucose C remaining in soil after 6 months (subtropical: 8.1–11.2 mg C g−1 SOC or 41-56% of added glucose; tropical: 8.7–15.0 mg C g−1 SOC or 43–75% of glucose) was substantially higher than the net C loss due to SOC decomposition including priming effect. This overcompensation of C losses was highest with continuous inputs and lowest with single inputs. Therefore, raised labile organic C input to soils by higher plant productivity will increase SOC content even though priming accelerates decomposition of native SOC. Consequently, higher continuous input of C belowground by plants under warming or elevated CO2can increase C stocks in soil despite accelerated C cycling by priming in soils.
论文下载: 下载地址
   

关闭窗口

返回首页

CAS-MART.png
数字标本.png
东南亚中心2.jpg
前往中国植物园联盟网站
W020160606696316538360.jpg
屏幕快照 2018-07-04 09.56.59.png