Google Search Baidu Search
(多个关键字请用"空格"格开)
您当前的位置:首页 > 科研成果 > 论文
论文

Utilisation of chemical signals by inquiline wasps in entering their host figs 

 
论文编号:
作者: Gu D
刊物名称: Journal of Insect Physiology
所属学科:
论文题目英文: Utilisation of chemical signals by inquiline wasps in entering their host figs
年: Oct 2013
卷: 59
期: 10
页: 1065–1068
联系作者: Yang DR
收录类别:
影响因子: 2.379
参与作者:
备注:
摘要: The fig tree, Ficus curtipes, hosts an obligate pollinating wasp, an undescribed Eupristina sp., but can also be pollinated by two inquiline (living in the burrow, nest, gall, or other habitation of another animal) wasps,Diaziella yangi and an undescribed Lipothymus sp. The two inquilines are unable to independently induce galls and depend on the galls induced by the obligate pollinator for reproduction and, therefore, normally enter receptive F. curtipes figs colonised by the obligate pollinators. However, sometimes the inquilines also enter figs that are not colonised by the pollinators, despite consequent reproductive failure. It is still unknown which signal(s) the inquilines use in entering the colonised and non-colonised figs. We conducted behavioural experiments to investigate several possible signals utilised by the inquilines in entering their host receptive figs. Our investigation showed that both inquiline species enter the receptive F. curtipes figs in response to the body odours of the obligate wasps and one of the main compounds emitted by the figs, 6-methyl-5-hepten-2-one. The compound was not found in the pollinator body odours, suggesting that the two inquiline wasps can utilise two signals to enter their host figs, which is significant for the evolution of the fig-fig wasp system. These inquilines could evolve to become mutualists of the figs if they evolve the ability to independently gall fig flowers; there is, however, another possibility that a monoecious Ficus species hosting such inquilines may evolve into a dioecious one if these inquilines cannot evolve the above-mentioned ability. Additionally, this finding provides evidence for the evolution of chemical communication between plants and insects.
论文下载: 下载地址
   

关闭窗口

返回首页

CAS-MART.png
数字标本.png
东南亚中心2.jpg
前往中国植物园联盟网站
W020160606696316538360.jpg
屏幕快照 2018-07-04 09.56.59.png