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Abstract

Traditionally, ecologists use lattice (regional summary) count data to simulate tree species distributions to explore species
coexistence. However, no previous study has explicitly compared the difference between using lattice count and basal area
data and analyzed species distributions at both individual species and community levels while simultaneously considering
the combined scenarios of life stage and scale. In this study, we hypothesized that basal area data are more closely related
to environmental variables than are count data because of strong environmental filtering effects. We also address the
contribution of niche and the neutral (i.e., solely dependent on distance) factors to species distributions. Specifically, we
separately modeled count data and basal area data while considering life stage and scale effects at the two levels with
simultaneous autoregressive models and variation partitioning. A principal coordinates of neighbor matrix (PCNM) was used
to model neutral spatial effects at the community level. The explained variations of species distribution data did not differ
significantly between the two types of data at either the individual species level or the community level, indicating that the
two types of data can be used nearly identically to model species distributions. Neutral spatial effects represented by spatial
autoregressive parameters and the PCNM eigenfunctions drove species distributions on multiple scales, different life stages
and individual species and community levels in this plot. We concluded that strong neutral spatial effects are the principal
mechanisms underlying the species distributions and thus shape biodiversity spatial patterns.
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Introduction

How large numbers of species coexist at a local scale (,1 km2) is a

challenging question for ecologists. With the rapid improvement of

computer technologyandstatistical tools, it isnowfeasible to integrate

both niche and neutral processes into models to analyze species

distribution data. Analytical methods, such as regression [1],

ordination and machine learning, can be used to investigate the

mechanisms underlying species coexistence [2,3]. Traditionally,

ecologists have used individual lattice count data to simulate species

distributions at the individual species or community levels [4,5]. In

this method, trees are always counted as individuals regardless of

factors such as age, size, branching and whether re-sprouting has

occurred. However, the habitat associations of tree species may vary

across life stages [6,7], and thus, tree intensity variation across lattices

may be insufficient to reflect species distribution patterns.

Many other traits of tree species can be used to simulate their

distributions, such as percent cover, point quadrat frequency,

biomass, basal area and energy and resource use [8]. These features

may provide novel insights for understanding species distributions

and their organizing mechanisms. We are unaware of previous work

explicitly comparing the results of using these features and the results

of using individual count data to model species distributions. Basal

area, which represents tree size, plays a key role in determining the

functional differences among species [9]. Basal area also correlates

with biomass accumulation and reflects the ability of trees to

compete for soil nutrients [10]. A comparative study in which

individual count data and basal area data are examined separately

will reveal the extent to which different results are generated by the

two types of data.

Most species tend to be clumped in their dispersion pattern [11],

which may cause strong spatial autocorrelation, i.e., greater or less

similarity in variables located close to each other than would be

expected if species were distributed randomly across geographic

space [12]. This is commonly observed in species spatial distribution

data [1]. To control Type I error rates and obtain good parameter

estimates, it is necessary to use spatially explicit models in spatial

analyses of species distributions [1,12,13]. In addition, environ-

mental factors, such as topography and soil, are also widely

considered in models of species distributions [14,15]. Integrating

spatial effects and environmental variables in species distribution

models is generally accepted by ecologists [16,17,18].

The effects of life stage and scale are critical for analyzing spatial

distributions of tree species. Physiological requirements, selective

pressures and distribution patterns can vary across the life stages of

plant species, which can lead to a shift in habitat preference
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throughout its ontogeny [19,20,21]. In fact, numerous empirical

studies have identified that the mechanisms underlying tree species

distributions do vary across different life stages in some forest

dynamics plots [6,7,22,23]. Similarly, previous studies point out that

analyses results can differ at different scales in ecological studies

[24,25], indicating that the scale effect is important for tree species

distributions [4,5].

In this study, we modeled lattice count data and basal area data

at the individual species level and at the community level while

simultaneously considering scale and life stage effects. At the

individual species level, a simultaneous autoregressive (SAR)

model was used. The spatially autocorrelated variation in the

error term of the SAR model is determined by cell connectivity,

and the cell connectivity of the lattice basal area data and the

count data is exactly the same based on cell positions. Therefore,

the spatial structure should be identical for the basal area data and

the count data. Under this premise, we hypothesized that basal

area data are more closely related to environmental variables and

predicted that the R-squared value of the fitted model based on

basal area data would be higher than that based on count data

because of strong environmental filtering effects. At the commu-

nity level, we partitioned the variation in community composition

between environmental variables and spatial effects for each of the

two types of data. At this level, we also predicted that the variation

explained by environmental variables would be higher for basal

area data than for individual count data, also owing to strong

environmental filtering effects.

Materials and Methods

Study Site and Data Collection
We analyzed tree species distributions within a 20-ha tropical

forest dynamics plot (21u379080N, 101u359 070E) in Xishuang-

banna, Southwest China [26]. The community was an old-growth

natural tropical seasonal rainforest tree community (more than

200 years old), but a small portion of the plot, located on the

mountain ridge, was disturbed by humans approximately 40 years

ago. The tree community was dominated by Parashorea chinensis, an

emergent canopy species with a maximum height of approximately

60 m. Detailed descriptions of the climate, geology and flora of

Xishuangbanna can be found in Cao et al. [27] and Zhu et al. [28].

The 20-ha plot was established in 2007, and a topographic survey

was conducted of each node of a 10-m grid throughout the plot. All

stems with a DBH (diameter at breast height) $1 cm were tagged,

mapped, measured and identified. There were 468 tree and shrub

species with individuals of DBH $1 cm in this plot [26].

To examine the mechanisms underlying any differences

between the results obtained from the basal area and count data

across life stages, we defined trees with DBH $1 cm as class 0.

This class was itself divided into four DBH classes, representing

different life stages of trees. This categorization of DBH classes

followed He et al. [21]:

Class0 : DBH§1cm

Class1 : DBH~1tov5cm

Class2 : DBH~5tov10cm

Class3DBH~10tov25cm

Class4 : DBH§25cm

For a tree with multiple stems, we computed a proxy DBH and

then classified the tree based on this proxy DBH. The calculation

of proxy DBH followed Hu et al. [23].

To evaluate the influence of scale on species distribution, we

grouped the trees within each DBH class using cells of 10610 m,

20620 m, 25625 m and 50650 m in size. This generated 20

combinations of DBH classes and cell sizes. Each DBH-cell size

combination contained a group of tree species, and for each DBH-

cell size combination, the tree species that occurred in at least 30 cells

were chosen for regression analysis and variation partitioning

(Table 1).

At each scale, the four topographic attributes of altitude,

convexity, slope and aspect were calculated for each cell. These

calculations followed Legendre et al. [5]. Third-degree polynomial

equations were constructed with altitude, convexity and slope. The

variables sin(aspect) and cos(aspect) were calculated from the

aspect and used as explanatory variables. Finally, we obtained 11

expanded topographic variables. For 25625 m cells, the altitudi-

nal values at all nodes were interpolated by kriging the raw data

from the 10610 m cells.

Because soil attributes are crucial to species distributions, we

collected 756 soil samples from throughout the 20-ha plot [23]. Nine

soil attributes were analyzed, including available nitrogen, ex-

changeable potassium, extractable phosphorus, organic matter, soil

pH, total potassium, total nitrogen, total phosphorus and soil bulk

density, following the methods of Liu et al. [29]. For the soil

attributes at each scale (cell size), the values at the four corners of

each cell were interpolated by kriging from the 756 samples. After

interpolation, the mean value of each soil attribute at the four

corners of each cell was assigned as the value for that cell. This

procedure was applied to each of the four scales of cell size. At each

scale, we calculated the principal components from the mean values

of the nine soil attributes and used only the first three components.

Together, these first three components explained 84.5%, 83.5%,

86.9% and 89.1% of the total variation in soil attributes for the four

cell sizes from 10610 m to 50650 m, respectively.

The Simultaneous Autoregressive (SAR) Model
Guisan et al. [30] suggested that regression and ordination

methods are both suited for species-specific and multiple species

models. We chose the SAR model for the regression analyses of

individual species because SAR has commonly been used for

lattice summary data [31]. Specifically, the SAR spatial error

model was used in this study in the following form:

Y~XbzlWmze ð1Þ

Table 1. Number of tree species in each of the 20
combinations of DBH and cell size.

DBH class 10610 m 20620 m 25625 m 50650 m

Class 0 206 192 187 153

Class 1 163 147 147 111

Class 2 70 61 56 33

Class 3 62 58 54 30

Class 4 25 22 21 10

Note: class 0 (DBH $1 cm), class 1 (1 cm # DBH ,5 cm), class 2 (5 cm # DBH
,10 cm), class 3 (10 cm# DBH ,25 cm), class 4 (DBH $25 cm).
doi:10.1371/journal.pone.0038247.t001

Spatial Effects Shape Tree Species Distributions
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where Y is the response variable, in this case, the lattice count or

basal area vector of a focal tree species at a particular cell size in a

particular DBH class; X is the explanatory variable matrix

constituted by the first three principal components of the soil

variables and the 11 topographic variables at a particular cell size;

b is a slope vector associated with the explanatory variables; l is

the spatial autoregressive coefficient; m is a spatially dependent

error term; e is a random error term; and W is the spatial

weighting matrix that indicates whether the cells are neighbors or

not. The weight is defined as 1 if cells are immediate vertical and

horizontal neighbors and 0 otherwise. For each focal cell, the cells

sharing a common edge (border) with it were defined as its

neighbor cells and were weighted by 1, and all other cells were

weighted by 0. To avoid zero-inflated effects on the regression

analysis, cells containing no trees were removed for each species.

We found that the R-squared values obtained by fitting only the

non-zero data were significantly higher than those obtained when

the zero data were included.

To evaluate the relative importance of all of the explanatory

variables in determining species distributions for each of the 20

combinations of DBH class and cell size for each type of data

(lattice basal area and count), a principal component analysis

(PCA) was used to analyze a transformed p-value matrix. The

SAR model yields a p-value for each of the explanatory variables

and l, and the p-values for all species can be formatted as a

matrix. Two such matrices were generated for each of the 20

DBH-cell size combinations: one that used basal area data and one

that used count data. Because the p-values reflected the

associations between responsible and explanatory variables in an

inverse manner, the p-values themselves could not be used directly

for the PCA. As a result, we performed a transformation

procedure on the p-values to obtain the transformed p-value

matrix, which positively reflected the association between respon-

sible and explanatory variables and were suitable for PCA. The

method used to transform the p-values followed Hu et al. [23].

Some of the p-values were small enough that a value of 0 was

returned by the SAR model in the R statistical language [32], and

the transformation procedure could not be applied to these p-

values. To address this issue, p-values smaller than 10216 were

assigned a proxy value of 10216. In each analysis, we plotted the

scores of all of the explanatory variables on the first two principal

component axes as arrows and assessed the relative importance of

the explanatory variables based on their vector lengths.

Community Composition Variation Partitioning
To quantify the contributions of the spatial and environmental

variables to the variation in community composition observed for

each of the two types of data, variation partitioning based on

canonical redundancy analysis was applied [33]. The topographic

and soil variables were grouped together as environmental

variables for this analysis. To represent spatial variables, the

principal coordinate neighbor matrix (PCNM) eigenfunctions were

computed across all cells at each scale of cell size [5]. PCNMs with

positive eigenvalues were retained, and forward selection (using a

permutation test with 999 permutations and a 5% significance

level) was used to identify the significant PCNMs. These selected

PCNMs represented the spatial effects. We then partitioned the

contributions of the environmental variables and the PCNMs.

This procedure was repeated for each of the 20 DBH-cell size

combinations for basal area data and count data.

To compare the R-squared values of the fitted regressive models

as well as the total explained variation in community composition

based on count data and basal area data, a Kruskal-Wallis rank-sum

test was performed. We conducted SAR analyses and variation

partitioning with the R (version 2.13.0) statistical language with the

‘‘errorsarlm’’ function of the ‘‘spdep’’ package and the ‘‘varpart’’

function of the ‘‘vegan’’ package, respectively [32].

Results

We found no significant differences in the R-squared value

between the fitted SAR models based on the two types of data for

any of the 20 DBH-cell size combinations, except for class 0 at the

scales (cell sizes) of 20620 m and 50650 m (p-values of Kruskal-

Wallis rank-sum test: 0.0087 and 0.0261, respectively). Among the

20 DBH-cell size combinations, the median R-squared value of

the fitted models based on count data were greater than that based

on basal area data in 14 cases, but only two of these cases were

statistically significant. By contrast, basal area data generated

greater R-squared values than count data in only 6 cases, and

none of these differences were statistically significant. Fig. 1

illustrates the distributions of the R-squared values generated by

the fitted SAR models based on each of the two types of data for

the 20 DBH-cell size combinations.

There was a positive trend in the R-squared value with

increasing cell size (Fig. S1). However, there was no clear

relationship between the R-squared value and the DBH class

(Fig. S2). There was a negative relationship between the R-

squared value and the total abundance of the studied species,

except at the 50-m scale (Fig. 2, Figs. S3, S4, S5).

The spatial autoregressive parameter l of the SAR fitted model

had the longest vectors in the 20 DBH-cell size combinations for

both count data and basal area data (Figs. 3 and 4, Figs. S6, S7,

S8, S9, S10, S11), indicating that spatial effects played a more

important role than any of the environmental variables in

determining tree species distributions in this forest plot.

The results of the community composition variation partitioning

were consistent with the results generated by the regression analysis

performed at the individual species level. Both analyses indicated

that spatial effects are dominant in determining species distributions

(Tables 2 and 3). There was no significant difference in the fraction of

variation explained by the pure environmental variables when either

the count data or the basal area data were used. For 10 of the 20

DBH-cell size combinations, the variation explained by the

environmental variables was higher when basal area data were

used than when count data were used. In addition, the Kruskal-

Wallis rank-sum test revealed no significant difference in the total

variation explained by the combined effects of spatial and

environmental variables when either the basal area data or the

count data were used. However, the count data yielded higher total

explained variation than did the basal area data for 17 of the 20

DBH-cell size combinations. For both types of data, the total

explained variation tended to increase as the scale (cell size)

increased (Fig. 5). By contrast, for both types of data, the total

explained variation decreased with an increase in the DBH size class

(Fig. S12).

Discussion

The Contributions of Environmental Variables
Although environmental variables constrained a portion of the

variations in the species distribution data, the variation partition-

ing results demonstrate that the environmental variables are

strongly structured by PCNM eigenfunctions. In other words, the

pure environmental variables play a limited role in determining

species distributions, and most of the variations in environmental

variables are derived from distance limitation. Among the

environmental variables, the nonlinear topographic variables and

Spatial Effects Shape Tree Species Distributions
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the first two principal components of soil variables contribute more

to species distributions than other environmental variables (Figs. 3

and 4, Figs. S6, S7, S8, S9, S10, S11). This implies that the

original topographic variables play little role in regulating species

distributions. In turn, this also is consistent with why Harms et al.

[14] suggest that the original topographic variables contribute little

to the species distributions. The nonlinear effect has been reported

to work well for species habitat associations under the scenarios of

habitat loss, patch size and isolation [34]. Because there is no such

distinct abrupt change of environmental variables at this study site,

the nonlinear effect does not dominantly contribute to species

distribution in this study.

Strong Neutral Spatial Effects
Our analyses based on both count data and basal area data

indicate that neutral spatial effects, which are specifically

represented by spatial autoregressive parameters of SAR and

PCNM eigenfunctions in this study, predominantly regulate tree

Figure 1. Distributions of the R-squared values of the fitted SAR models based on count data and basal area data for each of the 20
combinations of DBH and cell size. Each row represents a distinct scale of cell size; 0 to 4 in the x-axis labels represent DBH class 0 to 4,
sequentially; ‘‘-CO’’ and ‘‘-BA’’ in the x-axis labels represent count data and basal area data, respectively. Classes 0 to 4 are defined as follows: class 0
(DBH $1 cm), class 1 (1 cm # DBH ,5 cm), class 2 (5 cm# DBH ,10 cm), class 3 (10 cm # DBH ,25 cm) and class 4 (DBH $25 cm).
doi:10.1371/journal.pone.0038247.g001

Figure 2. Relationships between the R-squared values of the fitted SAR models and total species abundance for each of the 5 DBH
classes at the 20-m scale. Circles and triangles represent count data and basal area data, respectively. Classes 0 to 4 are defined as in Figure 1.
doi:10.1371/journal.pone.0038247.g002

Spatial Effects Shape Tree Species Distributions
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Figure 3. Principal component analysis ordinations (based on matrices of transformed p-values from the SAR models) of the 14
explanatory variables and the spatial autoregressive parameter l for each of the 5 DBH classes at the 20-m scale of the count data.
Classes 0 to 4 are defined as in Figure 1. The abbreviations in the third-degree polynomial equations of altitude, convexity and slope are as follows:
altitude (AL), altitude2 (AL2), altitude3 (AL3), convexity (CO), convexity2 (CO2), convexity3 (CO3), slope (SL), slope2 (SL2) and slope3 (SL3). The
abbreviations of the sine-cosine function of aspect and the spatial autoregressive parameter l are as follows: cos(aspect) (CA), sin(aspect) (SA) and l
(LA). The abbreviations of the first three principal components of the soil variables are as follows: the first principal component (CP1), the second
principal component (CP2) and the third principal component (CP3).
doi:10.1371/journal.pone.0038247.g003

Figure 4. Principal component analysis ordinations (based on matrices of transformed p-values from the SAR models) of the 14
explanatory variables and the spatial autoregressive parameter l for each of the 5 DBH classes at the 20-m scale, obtained with
basal area data. Classes 0 to 4 are defined as in Figure 1. The abbreviations are defined as in Figure 3.
doi:10.1371/journal.pone.0038247.g004

Spatial Effects Shape Tree Species Distributions
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species distributions across multiple life stages and scales at either

individual species or community levels. The spatial autoregressive

parameter and PCNM eigenfunctions are both distance-limited

factors, while distance is a key concept of neutral theory [35]; thus,

we conclude that neutral processes are essential to the tree species

distributions at the study site. In contrast to previous studies that

have focused on the scale at the individual species level [4] or

community level [5] or life stages at the individual species level [7]

or community level [22], our study integrates all of the four scales

of analysis to conclude that neutral spatial effects play a dominant

role in determining species distributions. Furthermore, we verify

this conclusion with both count data and basal area data.

In the present study, we extend the previously demonstrated

crucial role of neutral spatial effects in shaping species distributions

to multiple life stages for both basal area data and count data.

Without categorizing trees into different DBH classes, many

studies have verified that neutral spatial effects are the principal

determinants of species distribution patterns [18,36,37]. He et al.

[21] demonstrate that tree species distributions maintain aggre-

gated patterns at all life stages, and we demonstrate here that

neutral spatial effects are the dominant driver of tree species

distributions throughout life stages. Seidler and Plotkin [38] find

that seed dispersal modes are strongly correlated with the spatial

aggregation of intra-species from saplings to mature trees in a 50-

ha plot of Malaysian tropical forest, supporting our findings.

However, this seems to vary between different forest dynamics

plots. Lai et al. [7] showed that there are strong tree species

habitat associations at different life stages at the individual species

level. Kanagaraj et al. [22] demonstrated that habitat preference

strongly determined species distributions at the juvenile stage, but

neutral processes dominated the reproductive stage at the

community level. As far as our study is concerned, both basal

area and count data demonstrated that neutral processes

overwhelmingly regulated species distributions across life stages

at multiple scales at the individual species and community levels.

We suggest analyzing data from multiple sites with one unified

statistical method to produce more comparable results.

Legendre [12] suggests that either environmental variables or

community processes may result in spatial autocorrelation, which

represents the neutral spatial effect, of species distribution data.

Because the two most-recognized environmental variables (topog-

raphy and soil) play a limited role in determining species

distributions in this study, community processes could be the

crucial reasons for the spatial autocorrelation of species distribu-

tion data. Among the potential community processes, a distance-

limited dispersal process has been identified as a principal process

for producing tree species distributions in previous studies [18,38].

Because both the spatial autoregressive parameters and PCNM

eigenfunctions are distance-limited factors and the dispersal

process is also distance-limited [39], we suggest that dispersal

limitation serves as the major community process generating tree

species distributions in this plot. In turn, this explains why count

data and basal area data yield almost identical outcomes in the

two-level analyses and is also consistent with previous studies

reporting that tree species distributions are more clumped than

random [11,21,40].

Strong neutral spatial effects are also consistent with the

argument that investigating species spatial distributions without

considering spatial autocorrelation may bias the analysis results

[1,13]. Kühn [41] even suggests that the analysis results may be

inverted for the same data between analyses with and without the

incorporation of spatial autocorrelation. Our results show that

environmental variables do contribute to the tree species

distributions to some extent, but both SAR and variation

partitioning analyses demonstrate that neutral spatial effects are

dominant in this plot.

Count and Basal Area Data
Contrary to our expectation that the environmental variables

may be more closely related to the basal area data, the pure

environmental variables were identically related to basal area and

Figure 5. Distribution patterns of the total explained variation in community composition for each of the four scales of cell size
based on count data and basal area data. The reduplicate data at each scale consisting of the 5 total explained variations of the 5 DBH classes of
the variation partitioning results at each of the four scales.
doi:10.1371/journal.pone.0038247.g005

Spatial Effects Shape Tree Species Distributions

PLoS ONE | www.plosone.org 6 May 2012 | Volume 7 | Issue 5 | e38247



count data in terms of the community composition variation

partitioning results. This suggests that count data may be more

appropriate for analyzing species distributions than basal area data

in this plot. However, count data may not be suitable for

regression analyses when species are evenly distributed across all

cells in which they are present, as may occur for species with small

population sizes. For example, in this study, only one individual of

Canthium simile in DBH class 0 was counted in each cell at the 10-m

spatial scale, and this resulted in an infinite value of R-squared in

the SAR models.

Effects of Spatial Scale on Species Distributions
The increase in cell connectivity with cell size observed in this

study may explain both the increases in the R-squared values and

the total explained variation in the results of the SAR models and

variation partitioning, repectively. As an example, cell connectivity

clearly increased with increasing cell size for trees of Sloanea

tomentosa in class 4 (Fig. 6). This results in decreasing p-values of l
with increasing cell size, except when basal area data were used at

the 10-m scale. The R-squared values of the fitted models for S.

tomentosa tend to increase with increasing cell size, except when

count data are used at the 10-m scale (Fig. S13), consistent with

previous work demonstrating that the variation explained by auto-

Poisson regressive models when count data were used was much

smaller at the 10-m scale than at the 20-m and 25-m scales in a 20-

ha subtropical forest plot in southern China [4]. By contrast, in a

study of the beta diversity of tree species in a 24-ha subtropical

forest plot, Legendre et al. [5] found that the total explained

variations in species richness and community composition varied

little across sampling scales. Here, we found that the R-squared

values decreased with increasing total abundance of species (Figs. 2,

Figs. S3, S4, S5), in contrast to the finding of Wang et al. [4].

Because we simultaneously considered spatial scale and life stage,

our analyses generated more replicates than in previous studies

[4,5], and our results may therefore more broadly reflect patterns

at the individual species and community levels.

Conclusions
In conclusion, the present study demonstrates that both lattice

count data and basal area data can be reliably used to simulate the

spatial distribution of tree species. Neutral spatial effects, which are

specifically represented by the spatial autoregressive parameters

and PCNM eigenfunctions, adequately explain the variations in

both count data and basal area data at the individual species and

Table 2. Results of the partitioning variation between
environmental variables and spatial effects for each of the 20
combinations of DBH and cell size using basal area data.

Cell size (m) DBH class [a] (%) [b] (%) [c] (%) [d] (%)

10610 Class 0 0.16 1.720 11.80 86.31

Class 1 0.44 15.30 30.71 53.55

Class 2 0.41 10.80 21.90 66.89

Class 3 0.25 4.41 13.58 81.76

Class 4 0.16 1.57 14.89 83.38

20620 Class 0 0.98 9.45 19.37 70.20

Class 1 0.49 31.57 40.92 27.02

Class 2 0.62 27.90 35.55 35.94

Class 3 0.60 16.08 29.03 54.29

Class 4 0.71 9.18 22.08 68.04

25625 Class 0 0.58 10.07 21.60 67.75

Class 1 0.51 25.47 50.94 23.08

Class 2 1.02 20.97 45.09 32.92

Class 3 0.38 15.28 32.47 51.88

Class 4 0.63 9.83 19.42 70.12

50650 Class 0 6.85 19.94 22.94 50.27

Class 1 1.79 33.66 40.75 23.80

Class 2 2.21 37.14 33.35 27.30

Class 3 10.46 21.74 15.97 51.83

Class 4 8.35 15.82 37.35 38.48

Note: Adjusted R-squared statistics are shown. Fractions [a] – [d] are as follows:
[a] = variation explained by the environmental variables and not spatially
structured; [b] = variation explained by the environmental variables and
spatially structured; [c] = spatially structured variation not explained by the
environmental variables; [d] = residual variation. Fraction [b] is the intersection
of the variation explained by linear models of the two groups of explanatory
factors. Topographic and edaphic variables were used to compute fractions [a]
and [b]. Principal coordinates of neighbor matrix eigenfunctions were used as
explanatory variables to compute fractions [b] and [c]. class 0 (DBH $1 cm),
class 1 (1 cm # DBH ,5 cm), class 2 (5 cm # DBH ,10 cm), class 3 (10 cm #

DBH ,25 cm), class 4 (DBH $25 cm).
doi:10.1371/journal.pone.0038247.t002

Table 3. Results of partitioning variation between
environmental variables and spatial effects for each of the 20
combinations of DBH and cell size using count data.

Cell size (m) DBH class [a] (%) [b] (%) [c] (%) [d] (%)

10610 Class 0 0.58 15.83 39.51 44.08

Class 1 0.47 13.28 38.65 47.60

Class 2 0.54 12.86 23.86 62.74

Class 3 0.28 4.95 15.60 79.17

Class 4 0.22 3.99 15.68 80.12

20620 Class 0 0.45 31.95 45.30 22.31

Class 1 0.29 28.42 47.47 23.82

Class 2 0.45 30.91 36.56 32.08

Class 3 0.69 16.93 31.79 50.58

Class 4 0.53 17.82 28.26 53.39

25625 Class 0 0.49 23.96 56.15 19.40

Class 1 20.04 22.66 57.29 20.08

Class 2 0.77 23.26 46.54 29.44

Class 3 0.39 16.46 35.49 47.66

Class 4 1.28 13.52 30.81 54.39

50650 Class 0 2.66 31.52 39.54 26.27

Class 1 2.26 28.89 40.78 28.07

Class 2 5.43 35.39 31.38 27.80

Class 3 3.41 29.35 26.47 40.76

Class 4 6.60 20.79 18.88 53.73

Note: Adjusted R-squared statistics are shown. Fractions [a] – [d] are as follows:
[a] = variation explained by the environmental variables and not spatially
structured; [b] = variation explained by the environmental variables and
spatially structured; [c] = spatially structured variation not explained by the
environmental variables; [d] = residual variation. Fraction [b] is the intersection
of the variation explained by linear models of the two groups of explanatory
factors. Topographic and edaphic variables were used to compute fractions [a]
and [b]. Principal coordinates of neighbor matrix eigenfunctions were used as
explanatory variables to compute fractions [b] and [c]. class 0 (DBH $1 cm),
class 1 (1 cm # DBH ,5 cm), class 2 (5 cm # DBH ,10 cm), class 3 (10 cm #

DBH ,25 cm), class 4 (DBH $25 cm).
doi:10.1371/journal.pone.0038247.t003
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community levels. The community processes, especially distance-

limited dispersal process, may be the crucial mechanism underlying

clumped patterns of species distributions. We suggest grouping trees

into different DBH classes and analyzing their distributions at

multiple spatial scales to enhance the applicability of the results. To

achieve a broader understanding of the applicability of lattice count

data and basal area data in examining species spatial distributions at

both the individual species and community levels, further investiga-

tions based on large-scale plot data must be performed at additional

tropical, subtropical and temperate forest sites.

Supporting Information

Figure S1 Patterns of median R-squared values from the
fitted SAR models based on count data and basal area
data at four scales of cell size, controlling for DBH class.
Circles and triangles connected by solid and dashed lines represent

count data and basal area data, respectively. Bars indicate

standard deviations. Classes 0 to 4 are defined as in Figure 1.

(TIF)

Figure S2 Patterns of median R-squared values from
the fitted SAR models based on count data and basal
area data for five DBH classes, controlling for scale.
Circles and triangles connected by solid and dashed lines represent

count data and basal area data, respectively. Classes 0 to 4 are

defined as in Figure 1.

(TIF)

Figure S3 Relationships between the R-squared values
of the fitted SAR models and species total abundance for

each of the 5 DBH classes at the 10-m scale. Circles and

triangles represent count data and basal area data, respectively.

Classes 0 to 4 are defined as in Figure 1.

(TIF)

Figure S4 Relationships between the R-squared values
of the fitted SAR models and species total abundance for
each of the 5 DBH classes at the 25-m scale. Circles and

triangles represent count data and basal area data, respectively.

Classes 0 to 4 are defined as in Figure 1.

(TIF)

Figure S5 Relationships between the R-squared values
of the fitted SAR models and species total abundance for
each of the 5 DBH classes at the 50-m scale. Circles and

triangles represent count data and basal area data, respectively.

Classes 0 to 4 are defined as in Figure 1.

(TIF)

Figure S6 Principal component analysis ordinations
(based on matrices of transformed p-values from the SAR
models) of the 14 explanatory variables and the spatial
autoregressive factor l for each of the 5 DBH classes at the
10-m scale of the count data. Classes 0 to 4 are defined as in

Figure 1. The abbreviations are defined as in Figure 3.

(TIF)

Figure S7 Principal component analysis ordinations
(based on matrices of transformed p-values from the SAR
models) of the 14 explanatory variables and the spatial
autoregressive factor l for each of the 5 DBH classes at the
25-m scale of the count data. Classes 0 to 4 are defined as in

Figure 1. The abbreviations are defined as in Figure 3.

(TIF)

Figure S8 Principal component analysis ordinations
(based on matrices of transformed p-values from the
SAR models) of the 14 explanatory variables and the
spatial autoregressive factor l for each of the 5 DBH
classes at the 50-m scale of the count data. Classes 0 to 4

are defined as in Figure 1. The abbreviations are defined as in

Figure 3.

(TIF)

Figure S9 Principal component analysis ordinations
(based on matrices of transformed p-values from the SAR
models) of the 14 explanatory variables and the spatial
autoregressive factor l for each of the 5 DBH classes at the
10-m scale of the basal area data. Classes 0 to 4 are defined as

in Figure 1. The abbreviations are defined as in Figure 3.

(TIF)

Figure S10 Principal component analysis ordinations
(based on matrices of transformed p-values from the SAR
models) of the 14 explanatory variables and the spatial
autoregressive factor l for each of the 5 DBH classes at the
25-m scale of the basal area data. Classes 0 to 4 are defined as

in Figure 1. The abbreviations are defined as in Figure 3.

(TIF)

Figure S11 Principal component analysis ordinations
(based on matrices of transformed p-values from the SAR
models) of the 14 explanatory variables and the spatial
autoregressive factor l for each of the 5 DBH classes at the
50-m scale of the basal area data. Classes 0 to 4 are defined as

in Figure 1. The abbreviations are defined as in Figure 3.

(TIF)

Figure 6. Cell connectivity at each of the four scales of cell size
for Sloanea tomentosa in DBH class 4.
doi:10.1371/journal.pone.0038247.g006
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Figure S12 Patterns of total explained variation in
community composition across life stages based on
count data and basal area data. The reduplicate data at
each DBH class consisted of the total explained varia-
tions of the 4 scales of the variation partitioning results.
Numerals 0 to 4 represent the five DBH classes which
are defined as in Figure 1.
(TIF)

Figure S13 The p-values of l and the R-squared values
of the fitted SAR models for Sloanea tomentosa in DBH
class 4 at each of the four spatial scales.
(TIF)
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