Evaluating the models of stomatal conductance response to humidity in a tropical rain forest of Xishuangbanna, southwest China

Zhiheng Li, Yiping Zhang, Shusen Wang, Guofu Yuan, Yan Yang, Guiri Yu and Xiaomin Sun

ABSTRACT

The ecosystem-level fluxes of water vapour and carbon dioxide were measured from 2003 to 2006 at a tropical rain forest in Xishuangbanna, southwest China, using the eddy covariance (EC) technique. These flux measurements allowed the canopy-level evaluation of stomatal conductance (g) response to humidity models. The results showed that both the BWB model and the Leuning model discussed here underestimated g at high humidity and overestimated g at the mid-to-low range of humidity. In contrast, the Wang models discussed here (model-Da and model-Da) perfectly described the relationship of g response to humidity. The model comparison results also demonstrated high consistency over all the observation years. The good performance of the Wang model-Da and model-Da indicated that stomatal conductance responds more sensitively to humidity deficit or water vapour pressure deficit than to relative humidity itself at canopy level.

Key words | evaluation, humidity, response, stomatal conductance models, tropical rain forest

INTRODUCTION

The stomatal behaviour is an important physiological process that controls CO₂ and water vapour exchanges between plant leaves and atmosphere. These two fluxes largely determine the carbon and water cycles in the vegetated land surface and have profound impacts on the regional and global climate (Sellers et al. 1986; Margolis & Ryan 1997). It is therefore imperative to understand stomatal conductance and its mechanisms in ecological and climate studies. Stomata respond to environmental variables in an extremely complex way. Numerous laboratory and field studies have shown that light, air temperature, humidity and soil water status can directly modulate stomatal conductance (Cowan 1977; Jarvis & Mansfield 1981; Willmer 1988; Lloyd 1991; Franks et al. 1997; Schultz 2005).

Models in different forms have been used to simulate stomatal behaviour. The first stomatal conductance model was proposed by Jarvis (1976). This model empirically determines the response of stomata to environmental factors using the nonlinear least-squares analysis. But it ignores the linkage between leaf photosynthesis (A) and stomatal conductance (g). Ball et al. (1987) incorporate this linkage into their model (hereafter termed as the BWB model), which is given by

\[g = m h_s A / C_s + g_0 \] \hspace{1cm} (1)

where \(h_s \) (dimensionless) and \(C_s \) (\(\mu \text{mol mol}^{-1} \)) are the relative humidity and CO₂ concentration at the leaf surface, \(g_0 \) is the leaf minimum (residual) g (mol m\(^{-2}\) s\(^{-1}\)) when A (\(\mu \text{mol m}^{-2} \text{ s}^{-1} \)) reaches 0 and m is a dimensionless parameter. The BWB model was subsequently modified by...
Leuning (1995) who found stomatal conductance responds more closely to water vapour pressure deficit (D_a). The model is represented by:

$$g = a_1A/[(C_s - \Gamma)(1 + D_a/D_0)] + g_0$$ \hspace{1cm} (2)

where a_1 (dimensionless) and D_0 (Pa) are empirical coefficients and Γ (\text{\textmu}mol mol$^{-1}$) represents the CO$_2$ compensation point.

The main difference between the BWB model and the Leuning model is the humidity response function $f(H)$ (Equation (3)). The $f(H)$ equals mH_a in the BWB model and $a_1/(1 + D_a/D_0)$ in the Leuning model. Some investigators suggest that the BWB model performs better (Collatz et al. 1991; Sellers et al. 1996; Betts et al. 1999; Gutschick 2007), while other literatures show that the Leuning model is preferable in simulating stomatal conductance (Leuning 1995; Van Wijk et al. 2000; Mo & Liu 2001; Arora 2003). Independent evaluations of the two models are not always consistent and there is no compelling evidence in favour of either approach. In Wang et al. (2009a), they developed a diagnostic approach (Equation (5)) to calculate $f(H)$ through coupling canopy transpiration equation (Equation (4)) with photosynthesis-based stomatal model (Equation (3)). The $f(H)$ and transpiration equation are given by

$$f(H) = (C_s - \Gamma)(g - g_0)/A$$ \hspace{1cm} (3)

$$LE_{can} = L\rho_s(q_{sat(T_a)} - q_s)gH_2O$$ \hspace{1cm} (4)

$$f(H) = (C_s - \Gamma)LE_{can}/v\delta L\rho_s(q_{sat(T_a)} - q_s)A$$ \hspace{1cm} (5)

where LE_{can} (W m$^{-2}$) is canopy latent heat exchange due to transpiration, L (J kg$^{-1}$) is the latent heat of vaporization of water, ρ_s (kg m$^{-3}$) and q_s (kg kg$^{-1}$) are the density and specific humidity of the air at leaf surface, $q_{sat(T_a)}$ (kg kg$^{-1}$) is the saturated specific humidity at leaf temperature T_a ($^\circ$C), g_{H2O} (m s$^{-1}$) is the canopy g to water vapour ($g_{H2O} = \delta g$), δ is a parameter accounting for the difference of stomatal conductance to water vapour and to CO$_2$ and v is the volume of gas per mole. Note that the second item in the original equation (Equation (6)) of Wang et al. (2009a) is small and excluded in this study.

This diagnostic approach enables us to examine the response of g to humidity without requiring the leaf-level stomatal measurement which is tedious and costly. It could also test various stomatal conductance models at canopy level. The main difficulties in using Equation (5) are that it needs variables such as humidity and CO$_2$ concentration at the leaf surface, while most sites measure their values of the ambient air.

In Wang et al. (2009b), leaf surface variables (i.e. ρ_s, q_s, $q_{sat(T_a)}$ and C_s) were replaced by their corresponding ambient air variables (ρ_a, q_a, $q_{sat(T_a)}$ and C_a, which are the density, specific humidity, saturated specific humidity and CO$_2$ concentration of the ambient air, respectively) in Equation (5). It was found that these treatments only induced very small differences in predicting the response of g to humidity. As such, the ambient air variables can be used in Equation (5) to assess the canopy g-humidity relationships with acceptable accuracy. Based on this approach, Wang et al. (2009b) assessed the performance of the BWB model and Leuning model at the canopy level of three boreal forests in Canada. It was found that both of the two models could not adequately express canopy g-humidity relationships particularly at high humidity. They proposed the following canopy stomatal conductance models that were based on h_a (Equation (6), hereafter termed as Wang model-h_a) and D_a (Equation (7), hereafter termed as Wang model-D_a), and concluded that the two equations significantly outperformed the BWB and Leuning models:

Wang model-h_a: $g = a(1.0 - h_a)^\beta A/(C_s - \Gamma) + g_0$ \hspace{1cm} (6)

Wang model-D_a: $g = aD_a^\beta A/(C_s - \Gamma) + g_0$ \hspace{1cm} (7)

where α and β are parameters. (Note that they have different values in Equations (6) and (7), and the humidity response function $f(H)$ equals $\alpha (1.0 - h_a)^\beta$ in Wang model-h_a and aD_a^β in Wang model-D_a.)

The large difference between the four models (the BWB mode, the Leuning model, the Wang model-h_a and Wang model-D_a) occurs at high humidity. The latter two models can best predict the g-humidity relationships at high
humidity. This indicates that the diagnostic theory and the stomatal conductance models depend closely on humid conditions of the site.

Xishuangbanna in southwest China is located on the northern edge of the tropical zone in southeast Asia (Figure 1). Despite its relatively high latitude, Xishuangbanna has a tropical moist climate due to the impact of the Himalayan Mountains. The Himalayas lead to the penetration of warm and moist tropical air from the Indian Ocean to Xishuangbanna in summer, and blockade cold air from the north to the region in winter (Cao et al. 2006). To aim at long-term measurements of energy, water vapour and CO$_2$ fluxes in the tropical rain forest in Xishuangbanna, a tower flux measurement station was initiated by the Chinese Terrestrial Ecosystem Flux Research Network (CTEFRN, ChinaFlux) in the year 2002.

The humid conditions and present measurements at the site allowed us to validate the above diagnostic theory and to assess the canopy g-humidity relationships at the tropical site. Based on this, we calculated the diagnostic parameter $f(H)$ using Equation (5), the canopy flux measurements and the measurements of ambient air variables and then critically examined the performance of the four models (BWB, Leuning, Wang model-h_a and Wang model-D_a) of stomatal conductance response to humidity at canopy level in the tropical rain forest.

MATERIALS AND METHODS

Site description

The measurement station (21° 55’ 39”N, 101° 15’ 55”E) is located at a National Natural Reserve in Xishuangbanna, Yunnan Province, southwest China (Figure 1). This site is a permanent observation plot dedicated to long-term forest ecosystem research, managed by the Xishuangbanna Station for Tropical Rain Forest Ecosystem Studies (XSTRFES), Chinese Academy Sciences (CAS). The annual mean air temperature at the site is 21.7 °C, with a maximum monthly temperature of 25.7 °C for the hottest month (June) and a minimum monthly temperature of 15.9 °C for the coldest month (January). The annual mean precipitation is 1507 mm, 87% of which occurs in the rainy season (from May through October; Liu et al. 2008). The annual mean relative humidity is 86%.

The soil at the site is latosol developed from siliceous rocks, which is a dark-red clay soil with high organic matter content (about 20 g kg$^{-1}$; Sha et al. 2005). The typical vegetation in this area is represented by tropical seasonal rain forest with a canopy height of about 35 m. The dominant species are Pometia tomentosa, Terminalia myriocarpa, Gironniera subaequalis, Barringtonia macrostachya, Garcinia cowal, Knema erratica, Ardisia tenera, Mezzettiopsis creaghtii

![Figure 1](image_url)
and *Dichapetalum gelonioides*. The stands are mainly evergreen although there are some deciduous trees. Total canopy leaf area index (LAI) is about 5.58 m2 m$^{-2}$, with variations between 3.56 m2 m$^{-2}$ in the hot-dry season (March and April) and 6.34 m2 m$^{-2}$ in the rainy season (from May to October; *Zhang et al.* 2006). More detailed descriptions of vegetation at the site can be found in *Cao et al.* (1996, 2006) and *Zhu et al.* (2006).

Field measurements

The CO$_2$ and water vapour fluxes were measured at the site using the eddy covariance (EC) technique, which consists of a three-dimensional sonic anemometer-thermometer (Model CSAT-3, Campbell Scientific Inc., Logan, USA) and an open-path infrared gas analyzer (Model LI-7500, Licor Inc., Lincoln, NE, USA). All sensors were installed on a tower 48.8 m above the ground surface and about 10 m above the canopy. To minimize the potential disturbance of the tower on measurements, these sensors were oriented in the direction of the upwind side (210° from north). Data were recorded at 10 Hz by a data logger. To eliminate horizontal and vertical advection, the coordinate system rotation for the 3D wind speed was applied. Details of the instrumentation and data quality control are available from *Zhang et al.* (2006) and *Dou et al.* (2007).

Ambient air variables in the rain forest such as air temperature, relative humidity (RH) and wind speed were measured at the heights of 4.2, 16.3, 26.2, 36.5, 42.0, 48.8 and 69.8 m above the ground surface using platinum resistance thermometers (PRT), capacitive RH chips (Model HMP45C, Vaisala Inc., Finland) and anemometers (Model A100R, Vector Inc., UK), respectively. Net radiation (R_n) was measured on the top of the tower about 70.2 m above the ground using a rain gauge (Model 52203, RM Young, Inc.). All these data were collected using a data logger.

Parameters calculation

Details of the $f(H)$ calculations in Equation (5) were largely based on data from field measurements at the ecosystem level. The 30 min values of ambient air variables (i.e. p_a, q_a, $q_{sat(T_a)}$, C_a, h_a and D_a) were obtained from micrometeorological measurements. The 30 min values of A and LE_{can} were estimated by using empirically based corrections of ecosystem- to canopy-level fluxes.

The canopy photosynthesis rate (A) was obtained by

$$A = -F_{NEE} + F_{RE} \quad (8)$$

where F_{NEE} and F_{RE} are the net ecosystem CO$_2$ exchange (μmol CO$_2$ m$^{-2}$ s$^{-1}$) and ecosystem respiration (μmol CO$_2$ m$^{-2}$ s$^{-1}$). Note that the positive sign represents CO$_2$ release into the atmosphere (and vice versa). The net ecosystem CO$_2$ exchange (F_{NEE}) was computed from

$$F_{NEE} = F_c + F_s \quad (9)$$

where F_c is the 30 min averaged CO$_2$ fluxes above the canopy measured by EC instruments and F_s is the CO$_2$ storage in the canopy layer, which was estimated by the changes of CO$_2$ concentration measured by EC instruments. Ecosystem respiration (F_{RE}) was measured directly at the tower during night-time periods (*Falge et al.* 2002), and extrapolated over other periods by using exponential regressions of measured F_{RE} with air or soil temperature. The Lloyd and Taylor respiration equation (*Lloyd & Taylor* 1994) was used here for this exponential regression:

$$F_{RE,night} = F_{NEE,night} = F_{RE,298.16} \exp\left(\frac{1}{298.16 - T_0} \frac{1}{T_k - T_0}\right) \quad (10)$$

where T_k is air or soil temperature (K), E_0 is set to 309 K, $F_{RE,298.16}$ (μmol CO$_2$ m$^{-2}$ s$^{-1}$) is the ecosystem respiration rate at reference temperature (298.16 K) and T_0 (K) is the fitted parameters.
The canopy latent heat exchange (LE_{can}) was calculated by

$$LE_{can} = F_{LE} - LE_{soil} \quad (11)$$

where F_{LE} is the storage-corrected latent heat fluxes above the canopy and LE_{soil} is soil latent heat exchange. F_{LE} was estimated from

$$F_{LE} = LE_c + LE_s \quad (12)$$

where LE_c is the 30 min averaged latent heat fluxes above the canopy measured by the EC instruments and LE_s is the latent heat storage in the canopy layer. LE_s was computed here (Blanken et al. 1998; Oliphant et al. 2004) as:

$$LE_s = \rho_a L \sum_{i=1}^{n} \left(\frac{\Delta q_i}{\Delta t} \Delta z_i \right) \quad (13)$$

where L (J kg$^{-1}$) is the latent heat of vaporization, ρ_a (kg m$^{-3}$) and q_i (kg kg$^{-1}$) are the density and specific humidity of the air in the six layers below the EC measurements, $\Delta q_i/\Delta t$ is the layer-average changes of specific humidity and Δz_i is the height difference between two adjacent layers.

Soil latent heat exchange (LE_{soil}) due to soil evaporation was estimated based on other studies. Liu et al. (2005) estimated the soil evaporation at the same site using stable isotopic techniques, and found that soil evaporation was 5.1% of the total evapotranspiration in 2002 and 3.1% in 2003. The low soil evaporation would have a small impact on the calculation of the canopy transpiration (canopy latent heat exchanges, LE_{can}). As such, LE_{soil} was estimated as 4% of F_{LE} in this study which means that soil evaporation is proportionally related to total evapotranspiration.

RESULTS AND DISCUSSION

Analysis of the $f(H)$ calculation

According to Equation (5), the values of the diagnostic parameter $f(H)$ are mainly determined by the ratio of LE_{can}/A. The canopy-level A and LE_{can} were obtained by correcting the measured ecosystem-level fluxes of CO$_2$ and latent heat using the estimated F_{RE} and LE_{soil}. The impact of soil latent heat flux (LE_{soil}) on LE_{can} had been estimated in the preceding section. Here we discussed the impact of ecosystem respiration (F_{RE}) on A, and then analyzed the impact of uncertainties in both F_{RE} and LE_{soil} on $f(H)$ values.

The daytime ecosystem respiration (F_{RE}) could be estimated by the relationship between night-time F_{RE} and temperature (in air or in soil, Falge et al. 2002). Figure 2 shows the relationships between ecosystem respiration (F_{RE}) and air temperature (T_{air}) and soil temperature (T_{soil}) at the study site for all the 2003–2006 night-time data. In order to reduce the impact of high-frequency noise in the night-time flux measurements, 5 day night-time averaged data were used. It can be seen that there was an exponential increase in F_{RE} with response to the increasing T_{air} or T_{soil}. The parameters (such as $F_{RE,298.16}$ and T_0) best fitted between the F_{RE} and T_{air} using the Lloyd & Taylor Equation (10) were very close to those best fitted between F_{RE} and T_{soil}. In this study, the night-time $F_{RE} \sim T_{air}$ relationships were used to estimate the daytime F_{RE} since it could provide us with a reasonable explanation for ecosystem respiration,

1. Daylight hours when canopy photosynthesis and transpiration were strong (A was above 5 µmol m$^{-2}$ s$^{-1}$ and LE_{can} was above 40 W m$^{-2}$). At this time period, the canopy CO$_2$ and latent heat exchanges have the largest contributions in the measured ecosystem CO$_2$ and latent heat fluxes so that the impacts of uncertainties in F_{RE} and LE_{soil} on the estimations of A and LE_{can} are minimized.

2. Daylight hours when incoming shortwave radiation was above 150 W m$^{-2}$. Stomatal activities have minimal impact on canopy water and CO$_2$ exchanges when radiation is low.

3. Time periods when there is no water on the canopy (e.g. intercepted rain) to avoid the complication in canopy transpiration estimate.
which not only includes soil respiration but also contains stems, branches and leaves respiration.

Figure 3 showed the 30-min values of carbon flux components over five consecutive days in 2003 and 2005. It could be seen that the relative magnitudes of the flux components varied similarly between the two years. The canopy photosynthesis (A) exhibited a distinct diurnal pattern. The large variations in A at midday were mainly due to the high-frequency fluctuations in the measured F_{NEE}, since the ecosystem respiration (F_{RE}) was smooth. Moreover, the values of A were much higher than the ecosystem respiration (F_{RE}) in midday. This caused a much smaller ratio of F_{RE} to A, and could minimize the impact of the estimated F_{RE} on the accuracy of $f(H)$ estimations. Overall, during the study period over the four years, the ratios of total F_{RE} to total A were 0.41 (2003), 0.45 (2004), 0.41 (2005) and 0.39 (2006). The ratio differences between the four years were small (less than 0.10). The estimated F_{RE} was comparable with results from other studies. Measurements of soil, litter and low vegetation respiration at the same site were conducted using the static opaque chamber techniques during a rain-free period every week of 2003 (Sha et al. 2005). The ratio of total daytime soil, litter and low vegetation respiration to total photosynthesis (A) was 0.46, which is close to the Lloyd & Taylor equation estimation.

The uncertainties in the estimation of ecosystem respiration and soil evaporation are difficult to quantify precisely due to data limitations. Considering the average quantities of F_{RE}/A and $L_{\text{soil}}/L_{\text{can}}$ ratios stated above, errors of 10% in estimated F_{RE} and L_{soil} will result in the estimate error of $f(H)$ less than 5.1%, 5.6%, 5.2% and 4.9% in 2003, 2004, 2005 and 2006, respectively.

Evaluating the models of stomatal conductance response to humidity

Evaluations of the BWB model, Leuning model, Wang model-h_a and Wang model-D_a at the tropical forest site were conducted using the diagnostic parameter $f(H)$ (Equation (5)). Figure 4 shows the distribution of $f(H)$ with h_a together with the BWB model and Wang model-h_a for 2003, 2004, 2005 and 2006. The response of $f(H)$ to h_a exhibited great consistency in the four years. The $f(H)$ values increased in response to h_a increase, especially at

Figure 2 Relationship between night-time ecosystem respiration and temperature (in air and in soil) during the study periods from 2003 to 2006 at Xishuangbanna tropical rain forest, southwest China, using the Lloyd & Taylor model (Equation (10)). Here five-day means for night-time 30-min data were used for analysis. In the relationship of $F_{\text{RE}} - T_{\text{air}}$ (top panel), the fitted parameter $F_{\text{RE},298.16}$ and T_0 are 6.73 µmol CO$_2$ m$^{-2}$ s$^{-1}$ and 244.12 K, respectively, ($r = 0.70$); and in the relationship of $F_{\text{RE}} - T_{\text{soil}}$ (bottom panel), the fitted parameter $F_{\text{RE},298.16}$ and T_0 are 5.97 µmol CO$_2$ m$^{-2}$ s$^{-1}$ and 246.89 K, respectively, ($r = 0.68$).

Figure 3 The 30-min CO$_2$ flux components for five consecutive days in 2003 (top panel) and 2005 (bottom panel) in the canopy of Xishuangbanna tropical rain forest, southwest China (F_{NEE}: the net ecosystem CO$_2$ exchange; F_{RE}: ecosystem respiration estimated using the empirical relationship of air temperature; A: canopy photosynthesis calculated as the sum of F_{NEE} and F_{RE}).
high humidity where the response between them was more sensitive. The scattered spots of $f(H)$ versus h_a in Figure 4 were best fitted based on the least-squares regression analysis according to the form of BWB model (Equation (1)) and Wang model-h_a (Equation (4)), respectively. The fit performance by the BWB model (gray line in Figure 4) did not work well for the relationships between stomatal conductance and h_a. It made g overestimation at the mid-to-low range of humidity ($h_a < 80\%$, Figure 4; approximately 75$\%$ of total data, Figure 5) and g underestimation at high humidity values ($h_a > 80\%$, Figure 4; approximately 25$\%$ of total data, Figure 5). In contrast, the curvilinear fit by the Wang model-h_a (black curve in Figure 4) provided better estimations at any range of humidity.

Table 1 compared the statistical results of the two model performances in the four years from 2003 to 2006. The fit performance by the form of Wang model-h_a obtained a higher correlation coefficient and smaller standard deviation compared to that by the form of BWB model. This indicated that the g-humidity relationships depended on the curvilinear variation more strongly than on the linear variation.

Experiment on model parameterization showed that the parameters fitted by the BWB model varied more strongly than those fitted by Wang model-h_a over the four years. In the BWB model, the parameter m changed from 10.35 to 12.88 at this site (Table 1). The m is often near 10 among diverse C$_3$ species (Ball et al. 1987; Leuning 1990; Collatz et al. 1991). The larger m in our analysis may be mainly due to the rapid increase of $f(H)$ with the increasing h_a at high humidity. In the Wang model-h_a, the α values varied from 1.34 to 1.92 and the β values changed from -0.92 to -1.02 (Table 1). The slight variation in α and β over the four years indicated the great stability of model performance when predicting the g-humidity relationships using the Wang model-h_a. We also made an analysis of all the available data taken together to define the best estimate of these parameters. We found that the best estimates of α and β were 1.66 and -0.94, respectively, during the study period from 2003 to 2006 at this tropical site (Table 1).
Figure 6 showed the distribution of $f(H)$ with D_a together with the Leuning model and Wang model-D_a for the years 2003, 2004, 2005 and 2006. It can be seen that the response of $f(H)$ to D_a displayed a similar trend over the four years. The $f(H)$ values decreased as the D_a increased, and dropped rapidly when the D_a values were low (the humidity was high). The scattered spots in Figure 6 were best fitted using the nonlinear least-squares regression analysis based on the form of the Leuning model (Equation (2)) and Wang model-D_a (Equation (5)), respectively. In the Leuning model, some studies found that a value for D_0 of 350 Pa provided the best fit to most of the data, with D_0 values of up to 1500 Pa for some data sets (Leuning 1995). In this study, we obtained the best-fit relationships between $f(H)$ and D_a by constraining D_0 in the range of 350–1500 Pa.

Results of the nonlinear regression analysis for the $f(H)$ and D_a are also presented in Table 1. It was found that the fit performance using Leuning model accounted better (higher r and lower σ; Table 1) for the g-humidity relationships than that using the BWB model. The fit curve (gray curve in Figure 6) by the Leuning model reduced the overestimation bias at mid-to-low range of humidity and the underestimation bias at high humidity. Nevertheless, it still could not

<table>
<thead>
<tr>
<th>Year</th>
<th>BWB αh_a</th>
<th>Leuning $\alpha/(1+D_a/\beta)$</th>
<th>Wang model-D_a $h_a/(1-h_a)^\beta$</th>
<th>Wang model-D_a αD_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>α 12.06</td>
<td>29.44</td>
<td>1.78</td>
<td>1227</td>
</tr>
<tr>
<td></td>
<td>β 350</td>
<td>0.92</td>
<td>0.84</td>
<td>-0.80</td>
</tr>
<tr>
<td></td>
<td>r 0.37</td>
<td>0.67</td>
<td>0.84</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>σ 10.30</td>
<td>8.08</td>
<td>5.96</td>
<td>5.69</td>
</tr>
<tr>
<td></td>
<td>n 4227</td>
<td>4277</td>
<td>4277</td>
<td>4277</td>
</tr>
<tr>
<td>2004</td>
<td>α 12.88</td>
<td>31.30</td>
<td>1.92</td>
<td>1390</td>
</tr>
<tr>
<td></td>
<td>β 350</td>
<td>0.96</td>
<td>-0.96</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>r 0.39</td>
<td>0.66</td>
<td>0.88</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>σ 10.93</td>
<td>8.71</td>
<td>6.62</td>
<td>6.36</td>
</tr>
<tr>
<td></td>
<td>n 3544</td>
<td>3590</td>
<td>3544</td>
<td>3590</td>
</tr>
<tr>
<td>2005</td>
<td>α 10.35</td>
<td>25.98</td>
<td>1.34</td>
<td>1259</td>
</tr>
<tr>
<td></td>
<td>β 350</td>
<td>-0.98</td>
<td>0.88</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>r 0.36</td>
<td>0.65</td>
<td>0.88</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>σ 9.07</td>
<td>7.27</td>
<td>4.53</td>
<td>4.45</td>
</tr>
<tr>
<td></td>
<td>n 3781</td>
<td>3781</td>
<td>3781</td>
<td>3781</td>
</tr>
<tr>
<td>2006</td>
<td>α 11.44</td>
<td>28.35</td>
<td>1.38</td>
<td>1211</td>
</tr>
<tr>
<td></td>
<td>β 350</td>
<td>-1.02</td>
<td>-0.86</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>r 0.37</td>
<td>0.66</td>
<td>-1.02</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>σ 9.92</td>
<td>7.86</td>
<td>5.52</td>
<td>5.53</td>
</tr>
<tr>
<td></td>
<td>n 4045</td>
<td>4045</td>
<td>4045</td>
<td>4045</td>
</tr>
<tr>
<td>2003–2006</td>
<td>α 11.68</td>
<td>28.79</td>
<td>1.66</td>
<td>1146</td>
</tr>
<tr>
<td></td>
<td>β 350</td>
<td>-0.94</td>
<td>-0.94</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>r 0.37</td>
<td>0.66</td>
<td>0.85</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>σ 10.08</td>
<td>8.01</td>
<td>5.65</td>
<td>5.55</td>
</tr>
<tr>
<td></td>
<td>n 15,647</td>
<td>15,647</td>
<td>15,647</td>
<td>15,647</td>
</tr>
</tbody>
</table>

Note: α, β are the best-fit parameters when regressing the diagnostic parameter $f(H)$ against relative humidity or vapour pressure deficit in terms of the BWB model, Leuning model, Wang model-h_a and Wang model-D_a. r, σ are the correlation coefficient and standard deviation, respectively. n is the total number of samples used in the analysis. Data with $f(H) > 100$ were excluded.
capture the $f(H)$ rapid decrease with the increasing D_a at high humidity ($D_a < 600$ Pa, Figure 6; approximately 25% of total data, Figure 7). In contrast, the response relationship between $f(H)$ and D_a was best expressed by the form of Wang model-D_a (the highest r and the lowest σ; Table 1), as was shown in Figure 6 (black curve).

Model parameterization showed that the parameters in the Leuning model and Wang model-D_a were generally stable over the four years. In the Leuning model, the parameter D_0 was the same 350 Pa (Table 1) for each year. This was in good agreement with the studies of Leuning (1995) and Wang et al. (2009a, b). The parameter a_1 in the Leuning model changed from 25.98 to 31.30 at this site (Table 1). The larger a_1 in the analysis may be responsible for the overestimation at the mid-to-low range of humidity. In the Wang model-D_a, the parameter a values varied from 1211 to 1390 (Table 1) over the four years. In fact, these values would become small if D_a was measured in kPa when fitting the relationships between $f(H)$ and D_a using the Wang model-D_a. By comparison, the β values displayed small difference over the four years (from -0.79 to -0.83; Table 1). The analysis of the 4-year available data taken together defined the best estimate of the parameter a and β in Wang model-D_a, which were 1.66 and -0.94, respectively, during the study period from 2003 to 2006 at this tropical site (Table 1).

CONCLUSIONS

Stomatal conductance responding to humidity was studied in the tropical rain forest in southwest China using the diagnostic approach (Wang et al. 2009a) and the eddy covariance fluxes data measured at the canopy level. Our study showed the weak correlations between $f(H)$ and h_a when fitting this relationship by the BWB model, in which g was underestimated at high humidity and overestimated at the mid-to-low range of humidity. The fit of $f(H)$ to D_a by the form of Leuning model reduced this bias, but it still could not fully capture the response of g to D_a at high humidity. In contrast, The Wang model-h_a and Wang model-D_a that employed the power functions of $1-h_a$ and D_a (Equations (4) and (5)) perfectly expressed the relationships of stomatal conductance response to humidity. The model comparison results demonstrated high consistency over the four years from 2003 to 2006. Our results are in general agreement with those in Wang et al. (2009a, b) where the latter two models have been tested in three boreal forests in Canada.

The diagnostic theory provides a practical approach to evaluate the models of stomatal conductance response to humidity. Since it is based on the ratio of canopy latent heat and CO$_2$ fluxes rather than their real quantities (Stewart 1988; Ewers & Oren et al. 2000; Blanken & Black 2004), this reduces the impacts of measurement accuracies and energy closure problems which existed in flux measurements using the eddy-covariance (EC) technique (Barr et al. 2006). It works at canopy level which is beneficial for most land surface and hydrology schemes as they operate at canopy level. In our study, we successfully validated this theory in a tropical forest in southwest China. It is worth noting that, in this study, the evaluations of the BWB model and Leuning model were also conducted at the canopy level.

As mentioned earlier, the two models have been tested among diverse species in various biomes. They were both developed based on the data measured at the leaf level in laboratory-controlled environments. This made it difficult to extrapolate them to the canopy level which has a complex structure, heterogeneity of leaf physiological features and spatial variations in canopy microclimate. Although these stomatal conductance models had been up-scaled from leaf to canopy or larger scale for hydrological or climate modelling (Sellers et al. 1996; Cox et al. 1999), they also involved substantial simplifications and assumptions which could lead to large uncertainties. This is why the BWB model and Leuning model did not perform well in our study.

Furthermore, the model parameters were obtained through best fitting the relationship between the $f(H)$ and h_a or D_a; it did not consider the fact that the weightings of g in controlling leaf transpiration and CO$_2$ influx varied with environmental conditions. In other words, the same error in
g estimation would have a much larger impact on transpiration simulations under low humidity than under high humidity. The specific humidity deficit, which is the main force in driving leaf transpiration, was large at low humidity. As a result, the best fit between \(f(H) \) and humidity variables made the BWB model and the Leuning model perform poorly.

On the other hand, the main differences between the Wang model-\(h_a \) and Wang model-\(D_a \) are the forms of \(g \) responding to humidity (use \(1-h_a \) in Wang model-\(h_a \) and \(D_a \) in Wang model-\(D_a \)). The forms of both \(1-h_a \) and \(D_a \) represent the differences of humidity to saturated conditions, which reflect the ability of atmospheric evaporative demand. The good performance of the Wang model-\(h_a \) and Wang model-\(D_a \) implied that stomatal conductance may be much more sensitive to the humidity deficit or water vapour pressure deficit than to the relative humidity itself. Our results were in general agreement with those studies in Lloyd (1991), Wu et al. (2000), Blanken & Black (2004), in which \(g \) could be better predicted when replacing \(h_s \) by \(D_s \) in the stomatal conductance models.

ACKNOWLEDGEMENTS

We thank investigators in the Xishuangbanna Station for Tropical Rainforest Ecosystem Studies, Chinese Academy of Sciences, for their help with this study. We especially thank Mr Mengnan Liu and Mr Qinghai Song, who contributed substantially to the eddy covariance flux measurements. This study was conducted during the visit of the first author to the Canada Centre for Remote Sensing, Natural Resources Canada. This study was financially supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-Q1-05-04, KJCX2-YW-432-1), National Science Foundation of China (4081035, 40571163) and the Development Program in Basic Science of China (2002CB412501).

REFERENCES

First received 5 November 2009; accepted in revised form 26 April 2010