Short communication

MicroRNA (miR396) negatively regulates expression of ceramidase-like genes in Arabidopsis

Dongmei Liu a,b, Diqiu Yu a,*

a Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
b Graduate School of the Chinese Academy of Sciences, Beijing 100049, China

Received 22 July 2008; received in revised form 1 September 2008; accepted 2 September 2008

Abstract

MicroRNAs (miRNAs) are 21–23 nucleotide (nt), endogenous RNAs that regulate gene expression by targeting mRNAs for direct cleavage or translational repression in plants. In Arabidopsis, miR396 is encoded by two different loci (MIR396a and MIR396b) and sequence analysis suggests it may target three ceramidase-like genes (Atceramidase-like 1, Atceramidase-like 2 and Atceramidase-like 3). To demonstrate the biological function of miR396, we inserted the synthetic precursors, MIR396a or MIR396b, under the control of the enhanced cauliflower mosaic virus (CaMV) 35S promoter, into a plant transformation vector (pOCA30) and transformed the constructs into Arabidopsis. The promoter increased miR396 levels by more than 2-fold, indicating appropriate maturation of the synthetic precursor MIR396a or MIR396b transcript in transgenic plants. Microarray analysis showed that the transcript levels of two ceramidase-like genes (Atceramidase-like 1, Atceramidase-like 2) were decreased by more than 2-fold and lactosylceramide 4-α-galactosyltransferase increased by more than 2-fold in transgenic plants compared with the empty vector-transformed plants. Northern blot analysis showed that the mRNA levels of the two ceramidase-like genes were significantly reduced in transgenic plants. These results indicated that miR396 probably plays a crucial role in the ceramide metabolism pathway by negatively regulating the expression of ceramidase-like genes in Arabidopsis.

© 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.

Keywords: miR396; miR396 precursor; Ceramidase; Ceramide

1. Introduction

MicroRNAs (miRNAs) are 21–23 nucleotide, single-stranded non-coding RNAs that are processed by Dicer-like enzymes from long RNA precursors containing an imperfect stem-loop secondary structure [1,2]. Mature miRNA derives from the double-stranded portion of hairpin structures that range in length of 70–200 nucleotides [3–6]. The importance of plant miRNAs in various developmental processes, such as root, leaf and flower development, has been demonstrated [7]. For example, in Arabidopsis, miR164 regulates NAC1 transcription that functions in lateral root development [8]; miR165 plays a crucial role in the control of leaf morphogenesis [9]; miR172 regulates flowering time and floral organ identity by translational repression of apetala2 (ap2) [10]. In addition, some miRNAs also play important roles in plant responses to environmental conditions. For example, miR393 promotes plant disease resistance through suppression of auxin signaling [7,11–13]. Although miRNAs play important roles in plants, the targets and function of only a limited number of miRNAs have been demonstrated.

Forward genetics, direct cloning and bioinformatic prediction followed by experimental validation have been used to discover miRNAs [7,14]. Jones-Rhoades and Bartel identified 92 miRNAs, including miR396, using a bioinformatic approach in Arabidopsis and rice [3]. In Arabidopsis,
miR396 has two loci (MIR396a and MIR396b) and their expression patterns in different developmental stages have been detected by both Northern blot analysis and a PCR-based assay [3]. The miR396-target genes, including six growth-regulating factor (GRF) genes and two additional genes (At4g27180 and At2g40760) encoding a Kinesin-like protein B and a Rhodanese-like protein, respectively, have been predicted by a refined computational procedure [3]. Based on 5′ rapid amplification of cDNA ends (RACE), Jones-Rhoades and Bartel verified that miR396 could direct the cleavage of six GRF genes [3,7]. In addition, using EST analysis, Zhang et al. have demonstrated that the miR396 family, which is found in 15 different plant species, is highly conserved [15]. However, the biological functions of the miR396 family are not well understood.

Ceramides (the most simple sphingolipids), sphinganine and sphinganine-1-phosphate (SIP) play crucial roles as second messengers in regulating the biological functions of some enzymes and proteins [16,17]. Some plant sphingolipid genes have been cloned, expressed and functionally analyzed in yeast [18–21]. The functions of SIP and its related signaling molecules have attracted research interest in higher plants [22–24]. It was found that the cellular concentration of SIP was increased under drought stress and abscisic acid treatments, which led to the closure of guard cells [22–24]. In addition, the exogenous application of SIP inhibited light-induced stomatal opening and stimulated the closure of open stomata [25]. It has also been reported that sphinganine-1-phosphate lyase (SPL) plays important roles during leaf development and senescence in Arabidopsis. The level of transcription of AtSPL was dynamically changed during leaf development and senescence, and steadily increased from immature leaves to mature leaves [26]. AtSPL transcripts reached their highest levels at the final stage of leaf senescence [26]. This implies the role of AtSPL in regulating the cellular content of SIP in the leaf tissues [23]. In Arabidopsis leaf tissues, the SIP content is from 5 to 46 pg/g dry weight under normal growth conditions, and increases by 1.3- to 2.4-fold following drought stress [23].

In order to understand the biological function of miR396, we generated transgenic Arabidopsis plants that constitutively over-expressed MIR396a or MIR396b in this study. Using both the microarray and Northern blot hybridizations approach we demonstrated that miR396 negatively regulates the expression level of ceramidase-like genes in Arabidopsis. These results implied miR396’s function in the ceramide metabolism pathways.

2. Materials and methods

2.1. Plant material

All the experiments were performed on the Columbia ecotype of Arabidopsis thaliana. Seeds were surface sterilized and sown on plates containing Murashige and Skoog (MS) media containing 0.9% agar. Plates were transferred to a tissue culture box at 28 °C for about 5–7 days after being stratified in darkness at 4 °C for 2 days and then the seedlings were further transferred to soil and grown under normal conditions (14 h light, 23 °C/10 h dark, 20 °C).

2.2. Plasmid construction and Arabidopsis transformation

The 544 bp genomic sequence containing the MIR396a foldback sequence was amplified from Arabidopsis genomic DNA using two primers (5′-TGCTGAAAGAATGAC CTTT-3′ and 5′-AAACCTCATAGACAGAATGGG TT-3′) and cloned into pUCm-T vector (Sangon), producing a recombinant pt-MIR396a. The sequence of the amplified DNA fragment was verified by sequencing and then sub-cloned into pOCA30 between the CaMV 35S promoter and the NOS 3′ poly(A) signal to generate the 35S:MIR396a construct. The MIR396b sequence was amplified by PCR using two primers (5′-TCTTTAGCT CGACGCTACT-3′ and 5′-TTGATCTAAGAGTTAT CCTGTGT-3′) and the 35S:MIR396b construct was generated by the same procedure used for the 35S:MIR396a construct.

Arabidopsis transformation was performed using the floral-dip procedure as previously described [27].

2.3. Northern blot hybridizations

Total RNA was extracted from plant tissues with Trizol reagent (Invitrogen) and separated on 1.5% formaldehyde-MOPS agarose gels before being blotted onto Nylon membranes. Hybridization was performed at 68 °C with PerfectHyb Plus buffer (Sigma–Aldrich). The probes were labeled with 32P-dATP using the Klenow fragment (Takara).

For the analysis of small RNAs, 20 pg of total RNA was separated on a denatured 15% polyacrylamide gel-containing 7 M urea and transferred onto Nylon membranes. Hybridization was performed at 35 °C with PerfectHyb Plus buffer (Sigma–Aldrich). The probes were labeled with 32P-dATP by terminal deoxynucleotide transferase (Takara).

Fig. 1. Northern analysis of MIR396a (a) and MIR396b (b) transgenic plants.
2.4. Affymetrix microarray analysis

The plants transformed with the empty vector and miR396 transgenic plants were grown for about 20 days under the same conditions as described above. Total RNA was extracted from whole plants (except the roots) with TRIzol reagent (Invitrogen). The purified RNA was used for hybridization on Arabidopsis whole genome microarray gene chips (Affymetrix).

3. Results

3.1. Expression of miR396 and its precursors increased in transgenic plants

By comparative genomic approaches, we have known that miR396 has two loci, MIR396a and MIR396b, which are located on chromosomes 2 and 5 in Arabidopsis [3]. Both miR396a and miR396b are 21 nt in length and differ only in their last nucleotide [3].
In this study, transgenic plants that over express the synthetic precursors of miR396 were constructed, named 35S:MIR396a and 35S:MIR396b, respectively. Northern blot analysis demonstrated that under the control of the promoter miR396 precursor transcript levels increased by more than 2-fold in transgenic 35S:MIR396a and 35S:MIR396b plants compared with the plants transformed with the empty vector, indicating appropriate maturation of the synthetic precursor transcripts for MIR396a and MIR396b in Arabidopsis (Fig. 1).

3.2. Microarray experiments demonstrated that the expression of ceramidase-like genes decreased

It has been reported that isoforms of ceramidase differ mainly in their catalytic pH optima [28]. The ceramidase with acidic pH optima is named acid ceramidase. Likewise, the ceramidase with activity at neutral to alkaline pH is called neutral and alkaline ceramidase [28]. In Arabidopsis, three ceramidase-like genes all encode neutral and alkaline ceramidases (Table 1). MiR396 shares nearly perfect complementarity with a region present in the ceramidase-like genes, therefore miR396 might negatively regulate the expression of the ceramidase-like genes. Therefore, we used the Affymetrix microarray chip to analyze the genome of miR396 transgenic plants. The results showed that, in both the transgenic plants, the expression of Atceramidase-like 1 was decreased by 6.2-fold; the expressions of Atceramidase-like 2 and alkaline phytoceramidase were decreased by more than 2-fold; the expression of Atceramidase-like 3 was decreased by 1.6-fold; and the expression of lactosylceramide 4-α-galactosyltransferase was increased by more than 2-fold (all compared to the plants transformed with an empty vector) (Table 2). These results imply that ceramide was mainly converted into glucosylceramide when ceramidase decreased.

3.3. Northern blot verified miR396 negatively regulates ceramidase-like genes

In Arabidopsis, there are three members in the ceramidase-like gene family, Atceramidase-like 1, Atceramidase-like 2 and Atceramidase-like 3. Microarray analysis showed that the expression of these genes in miR396 transgenic plants was down-regulated by 6.2, 2.1 and 1.6-fold, respectively, compared with those in empty vector transgenic plants (Table 2). Likewise, Northern blotting showed that the transcript levels of Atceramidase-like 1 and Atceramidase-like 2 decreased by more than 8-fold and 2-fold, respectively, in transgenic 35S:MIR396a and 35S:MIR396b plants; the Atceramidase-like 3 expression level in transgenic 35S:MIR396a plants was down-regulated, but not markedly decreased in transgenic 35S:MIR396b plants (Fig. 2). Conversely, miR396 levels increased by more than 2-fold in transgenic 35S:MIR396a and 35S:MIR396b plants compared with the plants transformed with the empty vector (Fig. 2). This demonstrated that miR396 negatively regulates the expression of the ceramidase-like genes.

4. Discussion

It is known that miR396 is highly conserved among 15 different plant species, for both the primary and mature miRNA sequences. This is especially true for mature sequences and their complementary miRNA sequence [15]. MiR396 has high sequence similarity to the mRNAs from the ceramidase-like genes and therefore probably has crucial and conserved functions in plant development.
related to the ceramide metabolic pathway [15]. In this study, we found that one of miR396’s important functions is to negatively regulate the expression of three ceramidase-like genes.

In plants, ceramide is synthesized from sphinganine and is converted to complex sphingolipids by three pathways: conversion to glucosylceramide by glucosylceramide synthase, incorporation into fatty acids by ceramidase, and conversion to sphingomyelin by ceramide kinase [29] (Fig. 3). Accompanied with decreasing ceramidase levels, conversion to sphingomyelin by ceramide kinase, incorporation into fatty acids by ceramidase, and conversion to glucosylceramide by glucosylceramide synthase are mainly converted to glucosylceramide when the pathway for the formation of fatty acid was repressed (Fig. 3). This implies that miR396 plays an important role in the ceramide metabolic pathway by negatively regulating the expression of ceramide-like genes in Arabidopsis.

MicroRNAs have been demonstrated to affect both target-direct cleavage and translational repression in plants when miRNAs share nearly perfect complementarity with their targets. Given that the miR396 sequence has nearly perfect complementarity with the regions of the three ceramide-like genes (Fig. 4) and negatively regulates their expression (Fig. 2), we deduce that miR396 probably targets the ceramide-like genes in Arabidopsis.

It has been reported that the important function of plant miRNAs is that they negatively regulate their targets by cleavage and translational repression. A good approach for studying miRNAs’ function is to over-express miRNA precursors, because it increases miRNA levels, which in turn decreases target mRNA levels [8]. In this study, over-expression of miR396 precursors in transgenic plants leads to increased miR396 levels and decreased transcript levels of ceramide-like genes in Arabidopsis. The mechanism by which miR396 negatively regulates the ceramidase-like genes requires further investigation.

Acknowledgements

This work was supported by the National Hi-Tech Research and Development Program of China (Grant No. 2006AA02Z129), the National Natural Science Foundation of China (Grant No. 90408022) and the Science Foundation of Yunnan Province (Grant No. 2004C0051M).

References